
Version 5.1
for Microsoft® Windows®

2000 / XP / Vista / 7

Programmer's
Reference

Information and data in this document are subject to change without notice. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of NeuroCheck GmbH.

© 2010 NeuroCheck GmbH. All rights reserved.
www.neurocheck.com
Version 5.1 of Nov 02, 2010

NeuroCheck® is a registered trademark of NeuroCheck GmbH.
Microsoft, MS-DOS, Windows, Windows NT are either registered trademarks or trademarks
of Microsoft Corporation.

Contents

Introduction... 9

1 Using a Plug-In DLL in NeuroCheck ... 13
1.1 Loading a Plug-In DLL..13
1.2 Information About a Loaded Plug-In DLL ..14
1.3 Using the NeuroCheck API functionality ..15
1.4 Using Functions from a Plug-In DLL ..15

1.4.1 Administration Frame for Plug-In Check Functions15
1.4.2 Using a Plug-In Check Function in a Check Routine....................16

1.5 The Plug-In Menu..17

2 Interface Description .. 19
2.1 Interface Structure ...19

2.1.1 Managing a Plug-In DLL..19
2.1.2 Managing Plug-In Check Functions..20

2.2 Administrative Functions...22
2.2.1 Version Information..22
2.2.2 Info-Dialog ...23
2.2.3 Help File ...23
2.2.4 Menu Command Handler..23
2.2.5 Information about Plug-In Check Functions24
2.2.6 Information about Plug-In Data Types..24

2.3 Memory Management ..25
2.3.1 Output Data Objects of NeuroCheck Data Types25
2.3.2 Output Data Objects of Plug-In Data Types25
2.3.3 Custom Result Views..25
2.3.4 Data Output to File or RS232 Serial Interface26
2.3.5 Note ..26

2.4 The Plug-In Menu..26
2.4.1 Manual Mode Menu..26
2.4.2 Automatic Mode Menu ...26
2.4.3 Menu Items ...26
2.4.4 Menu Handler ...26

2.5 Structure of a Plug-In Check Function...27
2.5.1 Capabilities of Plug-In Check Functions.......................................27

4 NeuroCheck Programmer’s Reference

2.5.2 Initialization Routine ..27
2.5.3 Execution Routine...29
2.5.4 Deinitialization Routine ..30
2.5.5 Parameter Dialog Routine...30
2.5.6 Custom Visualization Routines...30

2.6 The Function Info Block..32
2.6.1 Function Info Block Declaration ..32
2.6.2 General Information..33
2.6.3 Input / Output Data Object Description ..34
2.6.4 Data Output Description ...35
2.6.5 Descriptive Texts ..36
2.6.6 Function Pointers ..37

2.7 Structure of a Plug-In Data Type ...38
2.7.1 Capabilities of Plug-In Data Types...38
2.7.2 Data Output Routine ...38
2.7.3 Destroy Routine ..41

2.8 The Type Description Block..41
2.8.1 Type Description Block Declaration ..41
2.8.2 General Information..42
2.8.3 Function Pointers ..43

3 Data Types and Definitions ..45
3.1 Image ...45
3.2 Histogram ..46
3.3 Regions of Interest...46

3.3.1 Layer of Regions of Interest..47
3.3.2 Single Region of Interest ..48
3.3.3 Object Contour ...50
3.3.4 Object Region ...51
3.3.5 Model Geometries ..52
3.3.6 Creating a new Region of Interest...53

3.4 Measurement Array ...55
3.5 Symbolic Constants ...56

3.5.1 Identification of Data Objects...56
3.5.2 Feature Values ..56
3.5.3 User-Defined Features ..60
3.5.4 Target Types ...60

Contents 5

4 NeuroCheck API Functionality .. 61
4.1 Access to Hardware Devices ...61
4.2 Bitmap Management..67
4.3 Access to NeuroCheck Settings ...71
4.4 Error Codes..74

5 Implementing a Plug-In DLL .. 77
5.1 Overview of the Sample Plug-In DLLs..77
5.2 Project Structure ..81

6 Custom Communication Interface .. 83
6.1 Using a Custom Communication Interface ..83

6.1.1 Loading a Custom Communication DLL83
6.1.2 Transmitting Data via the Custom Communication Interface84
6.1.3 Using the Custom Communication Interface for Remote-Control 86

6.2 Administrative Functions...87
6.2.1 Driver Initialization...87
6.2.2 Driver Setup..87
6.2.3 Driver Test ..87

6.3 Remote Control Functions ...88
6.3.1 Test for Start Signal ..88
6.3.2 Retrieve Check Routine Selection Signal88

6.4 Result Output Functions ..88
6.4.1 Final Check Result ..88
6.4.2 Floating Point Value ...88
6.4.3 Integer Value ..89
6.4.4 String ..89
6.4.5 Actuating Transmission ..89

7 OLE Automation ... 91
7.1 Introduction ...91

7.1.1 What is OLE? ...91
7.1.2 What is OLE Automation?..91
7.1.3 Applications of OLE Automation in NeuroCheck93
7.1.4 Capabilities of the NeuroCheck OLE Automation Interface.........93
7.1.5 Restrictions ...94
7.1.6 Preparing NeuroCheck for Control by OLE Automation..............94
7.1.7 Programming Language ..95
7.1.8 Using Type Libraries ..95

7.2 Exposed Automation Objects ..96

6 NeuroCheck Programmer’s Reference

7.3 NCApplication Object ...96
7.3.1 Properties..96
7.3.2 Methods ..109
7.3.3 Wrapper ..116

7.4 CheckRoutine Object...116
7.4.1 Properties..116
7.4.2 Methods ..123
7.4.3 Collection Properties and Methods...124
7.4.4 Wrapper ..126

7.5 SingleCheck Object ...126
7.5.1 Properties..126
7.5.2 Methods ..130
7.5.3 Collection Properties and Methods...133
7.5.4 Wrapper ..135

7.6 CheckFunction object ..135
7.6.1 Properties..135
7.6.2 Methods ..140
7.6.3 Wrapper ..147

7.7 Check Functions with Additional Automation Functionality.......................147
7.7.1 Data Exchange ..148
7.7.2 Identify Bar Code ...149
7.7.3 Identify DataMatrix Code ...149
7.7.4 Count ROIs ...150
7.7.5 Evaluate Classes ...150
7.7.6 Check Allowances ..151
7.7.7 Copy ROIs ..152
7.7.8 Determine Position ...152
7.7.9 Capture Image...153
7.7.10 Transfer Image..153
7.7.11 Determine Threshold ..153
7.7.12 Define ROIs ..154
7.7.13 Classify ROIs..154
7.7.14 Screen ROIs..154
7.7.15 Rotate Image...155
7.7.16 Template Matching...155

7.8 Source Code Samples for Visual Basic®..156
7.8.1 Attach and Detach Server, Open a Check Routine156

Contents 7

7.8.2 Access Single Checks and Check Functions158
7.8.3 Automatic Mode Execution ..158
7.8.4 Check Function Result ..159
7.8.5 Check Function Target Values..159
7.8.6 Display Image ...160
7.8.7 Access Digital Inputs and Outputs ..161

7.9 Source Code Samples for C/C++...162
7.9.1 Contact Server ..162
7.9.2 Access Check Routine ..163
7.9.3 Access Check Functions ...164
7.9.4 Automatic Mode Execution ..164
7.9.5 Display Live Image...165
7.9.6 Check Function Parameters ..165
7.9.7 Check Function Target Values..167
7.9.8 Check Function Result ..170
7.9.9 Read Image ...171

8 Check Routine in XML Format .. 173
8.1 Introduction ...173

8.1.1 What is XML ? ...173
8.1.2 Possible applications of XML format ...173

8.2 Description of the XML format of check routines174
8.2.1 General description of the structure of XML files174
8.2.2 Overview of the structure of the XML file of a check routine175
8.2.3 Sample ..175
8.2.4 Element <neurocheck_check_routine>.......................................177
8.2.5 Element <header> ...178
8.2.6 Element <body>..178
8.2.7 Element <single_check>...178
8.2.8 Element <check_function> ...178
8.2.9 Elements <cf_parameter> and <cf_target_values>.....................178
8.2.10 Element <parameter>..178
8.2.11 Notes on element attributes...179
8.2.12 Element <binary_stream_encapsulation>179
8.2.13 Purpose of the individual parts ...179

8.3 Using XSL files as rendering filter for the XML data..................................180
8.3.1 Purpose of the XSL files ...180
8.3.2 Creation of your own XSL files ..181
8.3.3 Notes on the included XSL files ...182

8 NeuroCheck Programmer’s Reference

9 Quick Reference..185
9.1 Plug-In Interface Administrative Functions and Structures185
9.2 Plug-In Check Function Declaration..188
9.3 Plug-In Data Type Declaration ..190
9.4 Plug-In Data Exchange Structures ...191
9.5 Plug-In Interface Symbolic Constants ...194
9.6 Custom Communication Interface ...196
9.7 OLE Automation Interface ..198

Introduction

In addition to the extensive functionality contained as built-in, NeuroCheck provides the
experienced user with three programming interfaces for extending the system. These
interfaces allow you to integrate self-developed image processing or communication functions
in NeuroCheck. In addition, you can run NeuroCheck as a software component in the
background and provide the operator with an individually developed Windows application as
user interface and control instance.

This Programmer's Reference describes the three programming interfaces which allow
NeuroCheck to be enhanced by user-defined functionality. These interfaces are:
• The plug-in interface for user-defined check functions and menu items.
• The custom communication interface for user-defined (serial) communication

protocols.
• The OLE automation interface for remote-control of NeuroCheck through other Win32

applications.
In addition, this document contains a description of the XML format of the NeuroCheck
check routine and a Quick Reference for all interfaces presented.

Plug-In Interface
NeuroCheck's plug-in interface lets you integrate dynamic link libraries (DLLs) with user-
defined functions for image processing and communication. Each DLL can contain an
arbitrary number of self-developed check functions. These functions have full access to data
objects created by NeuroCheck such as images or object features and are seamlessly
integrated into the user interface. Furthermore, the DLL can extend the menu structure of
NeuroCheck with customized menu commands.

NeuroCheck programmers typically use this interface for tasks like:
• control of special hardware (e.g. xy-table)
• database retrieval of external target values
• use of existing, specialized image processing know-how from self-developed libraries or

third-party products
• starting external programs, e.g. for back-up purposes or other administrative functions

Plug-In-DLLs for NeuroCheck can be created using common software development tools. The
typical programming language for this is "C" or "C++".

The documentation of the plug-in interface is structured as follows:
• The first chapter explains how to use a finished plug-in DLL in NeuroCheck.
• The second chapter describes the administration framework for plug-in functions

provided by NeuroCheck and explains how the plug-in interface works and what
operations are performed when a plug-in function is loaded and executed.

10 NeuroCheck Programmer’s Reference

• The third chapter details the data types and declarations used for accessing internal
NeuroCheck data structures and customized data structures in plug-in functions.

• The fourth chapter describes the use of the NeuroCheck API functionality in a plug-in
DLL.

• The fifth chapter gives an overview of the sample plug-in DLLs included in the
NeuroCheck installation.

Custom Communication Interface
This interface has been designed for the integration of communication drivers implemented as
dynamic link libraries (DLL). Thus NeuroCheck can be remote-controlled by any type of
communication hardware and can transmit result data using this hardware.

A typical example is the support of proprietary serial protocols for connecting to a PLC
(programmable logic control) unit. Other examples might be the output of result data to a
database or a quality management system, the implementation of a proprietary output file
format or data transmission via TCP/IP. Also, basic control tasks like a conditional change of
a check routine or a loop might be realized with this interface.

The usage and the implementation of a custom communication DLL is explained in the sixth
chapter.

OLE Automation Interface
NeuroCheck supports OLE automation, the Windows standard for direct communication
between programs. Thus NeuroCheck can be run as a server which is remote-controlled by a
self-developed OLE controller program.

Such an OLE controller program can, for instance, load and run a complete NeuroCheck
check routine. It also can access result values or modify parameter settings of the inspection
task. The controller program thus can be used to provide an individual user interface for
specific applications or to perform complex communication and control tasks.

Controller programs can be developed using common software development tools for
Windows applications like, for example, Visual Basic®.

Chapter seven contains the complete description of the OLE automation interface of
NeuroCheck. After an introduction to OLE in general it details and explains the available
interface calls for NeuroCheck including source code extracts for both Visual Basic® and
Visual C++®.

Contents 11

Check Routine in XML Format
NeuroCheck check routines can be exported in the human readable XML format. This
facilitates a custom visualization of your check routine solutions for analysis and
documentation purposes. Furthermore, it allows to monitor changes between check routines
and the external manipulation or even automatic creation of check routines.

Chapter eight explains the XML format used for the check routine data and indicates possible
applications. In addition, it gives hints and instructions for custom visualization using
extended style sheets (XSL).

Quick Reference
The ninth chapter finally represents a Quick Reference by summarizing syntax and parameters
of all functions and data structures relevant for programming user extensions to NeuroCheck.

1 Using a Plug-In DLL in NeuroCheck

When realizing image processing applications it may happen that the main part of the
inspection problem can be solved using the built-in standard functions of NeuroCheck,
whereas a few requirements cannot be met. Often these requirements are so specific to the
application that the cost and implementation overhead needed to integrate the solution into a
standard software package are prohibitively large. The plug-in interface has been defined to
allow such specific functionality to be added to NeuroCheck without changes to the main
body of the program.
This chapter describes how to load and use a fully implemented plug-in DLL in NeuroCheck.

1.1 Loading a Plug-In DLL
Loading a plug-in DLL is initiated by choosing Options from the System menu. On page
Plug-In of the General Software Settings dialog box clicking the Add button opens a file
select dialog for selecting the DLL to be loaded. The plug-in is loaded dynamically.
A successfully loaded DLL will be indicated with the plug-in icon and a green check box.

Figure 1: property page for loading a plug-in DLL into NeuroCheck

14 NeuroCheck Programmer’s Reference

Error loading of the DLL will be indicated by a red icon. The comment column will contain
Information about the error. If output of a global debug log file is activated on page Debug,
details on the error will be written to the file Nclog.txt.
Each successfully loaded plug-in DLL can be activated or deactivated. A deactivated DLL
will not be used, but remains loaded. Selecting a DLL and clicking the Remove button
removes the DLL from the list.
The order of loading different DLLs depends on the order in the list of plug-in DLLs. This
may be important if some plug-in DLLs depend on each other. The order of loading the DLLs
can be changed with the arrow buttons.
Selecting a certain DLL in the list and clicking the Info button opens a message box with
information about the DLL.

1.2 Information About a Loaded Plug-In DLL
After successfully loading a plug-in DLL the NeuroCheck Help menu will contain a new
menu item About Plug-In DLL. Choosing this menu item displays a sub menu list with the
names of all loaded plug-in DLLs. The names of not activated DLLs will be disabled.

Choosing the name of a activated DLL opens a message box with information about the DLL.
The appearance of this message box is defined by the programmer of the DLL. Usually it will
contain name, version and purpose of the DLL to distinguish between plug-in extensions
specific to different visual inspection systems. The following figure shows the info dialog of
the included sample DLL:

Figure 2: info dialog of included sample DLL

Successful loading of at least one plug-in DLL is also indicated in the status bar by the plug-in
symbol, as shown in the following figure:

Figure 3: plug-in DLL indicator in status bar

Hint: Double-clicking the plug-in field in the status bar opens directly the page Plug-In of the
General Software Settings dialog box.

Using a Plug-In-DLL in NeuroCheck 15

1.3 Using the NeuroCheck API functionality
If at least one plug-in DLL has been loaded successfully, the NeuroCheck API functionality
can be activated. Please note that this feature is only available, if NeuroCheck can find file
Ncapi.dll in its installation path. Clicking the Info button opens a message box with
information about the API functionality.

Figure 4: info dialog of NeuroCheck API DLL.

If the use of the NeuroCheck API functionality is activated, the plug-in symbol displayed in
the status bar will change from yellow to green. Details on the NeuroCheck API functionality
are listed in chapter „NeuroCheck API Functionality“.

1.4 Using Functions from a Plug-In DLL

1.4.1 Administration Frame for Plug-In Check Functions
Apart from a few restrictions NeuroCheck offers the same administration frame to functions
from a plug-in DLL that is used for the built-in standard functions. The restrictions are:
• Plug-in functions cannot have a target value dialog. However, the parameter dialog can

be used instead for target value input.
• It is not possible to duplicate the Apply-button functionality of updating the result display

while the parameter dialog is being displayed, because the complicated interaction
between main program and dialog required for this functionality would increase the
administration overhead of the plug-in interface prohibitively.

16 NeuroCheck Programmer’s Reference

The user will not notice any other differences between functions from a plug-in DLL and
built-in functions. This means for example:
• Plug-in functions are added to a check routine like built-in functions, i.e. using the

commands New Append Check Function resp. New Insert Check Function from
the Edit menu. The functions are selected from their own page in the Select New Check
Function dialog box. The dialog box displays a function description as well as hints for
the usage of the function.

• Help topics describing the functions can be called by choosing Info from the Check
Function menu or by clicking the Help button in the Select New Check Function dialog.
NeuroCheck automatically redirects the help calls to a help file created by the
programmer of the plug-in DLL.

• Plug-in functions can have a parameter dialog. The parameter copy and undo
functionality is provided for these parameter dialogs in the same way as for the built-in
functions.

• Plug-in functions access input data in the same way as built-in functions. The Input Data
Configuration dialog operates in the usual manner.

• Plug-in functions are stored and loaded together with check routine like built-in functions.
The programmer of the plug-in DLL does not need to provide his own file handling
functionality.

• The names of the different result representations in the list boxes of the result display
pane are customizable. If not specified, predefined names like Gray level image (In) are
used.

• Plug-in functions can have their own graphical result display, allowing to visualize
overlays (like drawing measuring lines into the source image) or custom data
descriptions.

• Plug-in functions can participate on the standard NeuroCheck data output, i.e. output of
bitmap files and data output to file or RS232 serial interface.

1.4.2 Using a Plug-In Check Function in a Check Routine
After a plug-in DLL has been successfully loaded, the Plug-In button in the Select New Check
Function dialog box is enabled. Clicking the button, the functions of all activated plug-in
DLLs are shown in a tree view. The functions are listed as sub nodes of the DLL they belong
to. The function to be appended or inserted is selected as usual and integrated into the check
routine.
For two plug in DLLs named Ncoem V42.dll and Ncoem V50.dll this will appear as
in the following figure:

Using a Plug-In-DLL in NeuroCheck 17

Figure 5: property page for plug-in check functions in NeuroCheck

1.5 The Plug-In Menu
In addition to user-defined check functions the plug-in DLL can define additional menu items,
separately for manual and automatic mode. This allows the user to access special
functionality, like initializing communication protocols, starting external programs etc.
The menu items are appended to the Tools menu as shown in the following figure for manual
mode. The names of the individual menu items can of course be defined at will by the DLL
programmer.

18 NeuroCheck Programmer’s Reference

Figure 6: plug-in menu for manual mode in NeuroCheck

2 Interface Description

This chapter describes the individual elements of the plug-in interface and the operations
taking place during initialization, use and deinitialization of a plug-in DLL and its functions.

2.1 Interface Structure
To enable NeuroCheck to use the functions contained in a plug-in DLL certain conventions
have to be adhered to. Every plug-in DLL has to contain certain administration functions
accessible from within NeuroCheck with a specific name.
This section will first give an overview of the administration frame for the DLL and its
functions. Subsequent sections will cover the individual administration functions in detail.

2.1.1 Managing a Plug-In DLL
Administration of a plug-in DLL in NeuroCheck consists of the following operations:
1. Upon program startup or upon loading the DLL on page Plug-In of the General Software

Settings dialog box the DLL is loaded into the memory area of the NeuroCheck process
and is initialized.

2. NeuroCheck calls routine PI_GetNumberOfFcts(). This routine is declared within
NeuroCheck and has to be provided by every plug-in DLL. NeuroCheck allocates a
control data structure for each of the plug-in check functions.

3. For each plug-in check function NeuroCheck calls routine PI_GetFctCaps() which
returns a function info structure containing information required by NeuroCheck to
handle the plug-in check function.

4. If exported from the plug-in DLL, NeuroCheck then calls routine
PI_GetNumberOfDataTypes(). NeuroCheck allocates a control data structure for
each of the plug-in data types.

5. For each data type NeuroCheck calls routine PI_GetDataTypeDesc() which returns
a type description structure containing information required by NeuroCheck to handle the
plug-in data type.

6. The plug-in check functions and data types can then be used like built-in functions and
data types with the exception, that plug-in data types can only be used by plug-in check
functions. Every call to a plug-in function causes data to be exchanged between
NeuroCheck and the DLL.

7. Before exiting NeuroCheck removes the plug-in DLL from memory.

The following figure illustrates this administration framework.

20 NeuroCheck Programmer’s Reference

Figure 7: administration framework for plug-in DLLs in NeuroCheck

2.1.2 Managing Plug-In Check Functions
Administration of a plug-in check function consists of the following operations:
1. Inserting a plug-in check function.
2. Setting parameters of the check function.

Interface Description 21

3. Executing the check function.
4. Using the output possibilities of the check function.
5. Removing the check function from the check routine.
For every check function the plug-in DLL has to provide a dedicated routine for each of these
operations. These functions are explained in detail in section „Structure of Plug-In Functions“.
This section will explain only the services provided by the main program for the plug-in check
functions.

Inserting a Plug-In Check Function
When a user-defined check function is inserted into (or appended to) a check routine,
NeuroCheck retrieves information about the function from its info structure. This information
comprises e.g.:
• Function name.
• Size of parameter area.
• Function addresses.
NeuroCheck allocates memory for the parameter area and executes the initialization routine of
the plug-in check function. This initialization routine can provide services like setting default
parameters, opening communication channels, initialize hardware etc. The following figure
illustrates the process. The solid arrow going out from the initialization routine indicates that
the routine is actually executed at this point, for example to set parameter values.

Figure 8: initialization of plug-in check function

Setting Plug-In Check Function Parameters
If the plug-in check function owns a parameter area and a dialog routine NeuroCheck will call
this routine under the same conditions as for a built-in function, e.g. upon choosing
Parameters from the Check Function menu. Dialog display, parameter value update and
management of the internal structure of the parameter area are the business of the DLL alone.
Using an unstructured buffer area NeuroCheck provides the one-step undo function existing

22 NeuroCheck Programmer’s Reference

for built-in functions. The button will revert the last changes made to the function
parameters. In the same way NeuroCheck implements the parameter copy functionality.
Validation of the copied parameter block is again the business of the plug-in DLL.

Executing a Plug-In Check Function
Whenever NeuroCheck encounters a plug-in check function in the course of a check routine, it
will call the execution routine of the plug-in check function. The current context information
(e.g. about the current operating mode), the parameter block and pointers to all required input
data objects are passed to the function, according to the specifications in the function info
structure.
The execution routine of a plug-in check function can create data objects of the types image,
layer of ROIs, histogram and measurement list, if the function info structure registered these
with NeuroCheck. In addition, it can create output data objects of same plug-in data type
registered by its plug-in DLL. Objects of plug-in data types can only be passed to other plug-
in functions of the same plug-in DLL whereas NeuroCheck data objects can be used by any
check function. The execution routine will receive pointers to adresses of such data objects,
can allocate memory for the data objects and return the adresses to NeuroCheck. Conventions
for memory allocation are described below.

Using the Output Possibilities of a Plug-In Check Function
If registered in the function info structure, NeuroCheck will update the plug-in check
function’s graphical output. Each function can have several user-defined „Views“. Plug-in
check function also can take part in the standard data output of NeuroCheck, i.e. output of
result values to file or serial interface.

Removing a Plug-In Check Function
Before removing a plug-in check function NeuroCheck calls its deinitialization routine for
clean-up of any initialized structures, e.g. communication channels.

2.2 Administrative Functions
To organize communication between NeuroCheck and the plug-in DLL certain administrative
functions are required. Their names, declarations and calling conventions are defined within
the main program and must not be changed!

2.2.1 Version Information
Every plug-in DLL has to inform NeuroCheck about the interface version for which it has
been compiled. During DLL loading, NeuroCheck calls this function and compares the value
returned with the internal interface version information. If the value returned by the DLL
function does not match any of the plug-in interface versions provided by NeuroCheck, it will
refuse to load the DLL and you will have to recompile it after implementing the necessary
changes.
The function declaration is:

Interface Description 23

extern "C" unsigned int WINAPI PI_GetVersion(void)

Please note that NeuroCheck will recognize three plug-in interface versions
• Interface version 400 for compatibility with DLLs developed for NeuroCheck 4.x
• Interface version 500 for compatibility with DLLs developed for NeuroCheck 5.0 and 5.1

up to SP4.
• Interface version 510 for DLLs developed for NeuroCheck 5.1 SP5 or later according to

the interface description in this reference.
Please note that the differences between 500 and 510 are neglectible. Therefore, upgrading a
DLL from interface version 500 to 510 simply means to re-compile with the header file
PI_Types.h. Check routines containing plug-in functions created for interface version 500
still can be loaded with the new DLL of interface version 510.
The plug-in samples included with the NeuroCheck setup will always contain a function
returning the correct number for the respective NeuroCheck version.

2.2.2 Info-Dialog
Every plug-in DLL has to display an information dialog. This function is called from within
NeuroCheck by clicking the Info button on page Plug-In of the General Software Settings
dialog box, or by choosing the DLL name from the sub menu of About Plug-In DLL from
the Help menu. Its declaration is:

extern "C" void WINAPI DllInfo(HWND hwndMain)

Its single function parameter is the handle for the NeuroCheck main window.

2.2.3 Help File
A plug-in DLL programmer can provide the user of his DLL with a dedicated help file in
WinHelp or HtmlHelp format. After loading the DLL NeuroCheck calls function

extern "C" BOOL WINAPI PI_GetHelpFilePath(LPSTR lpszPath)

to retrieve filename and path of the help file to be used for all help calls concerning plug-in
functions. In lpszPath the address of a buffer with size _MAX_PATH is passed to the
function so that the function can copy any legal path name into this buffer. NeuroCheck will
decide upon the file extension whether to call WinHelp (*.hlp) or HtmlHelp (*.chm). If no
help file has been provided for the plug-in DLL the function should return FALSE.
NeuroCheck will then ignore all help inquiries concerning plug-in functions.

2.2.4 Menu Command Handler
The plug-in DLL can implement additional menu commands for the Tools menu in manual
and automatic mode. This is explained in detail in section „The Plug-In Menu“. NeuroCheck
reads the menus from the DLL resources. When one of the custom menu commands is
selected during runtime, NeuroCheck calls function

extern "C" void WINAPI PI_MenuCommand(
HWND hwndMain,
unsigned int uiCmdId)

with the handle of the main application window and the ID of the selected menu item as
parameters.

24 NeuroCheck Programmer’s Reference

2.2.5 Information about Plug-In Check Functions
NeuroCheck requires information about the properties of the check functions defined in the
DLL to be able to utilize them. Two functions serve this purpose:

extern "C" unsigned int WINAPI PI_GetNumberOfFcts(void)

is called immediately after loading the DLL and must return the number of check functions
contained in the DLL. NeuroCheck uses this number to allocate the required number of
function info blocks.
The following function returns information about the capabilities of individual plug-in check
functions.

extern "C" BOOL WINAPI PI_GetFctCaps(
unsigned short int uiIndex,
sPI_FCT_DESC* const psFctDesc)

It is called in a loop after PI_GetNumberOfFcts()once for each function. The loop
counter is passed in uiIndex (counted from 0 up to the return value of
PI_GetNumberOfFcts() minus 1). In psFctDesc NeuroCheck passes the address of
the allocated function info block for the current function. Function PI_GetFctCaps() has
to fill in the information about the check function indicated by the index into the members of
this info structure.

2.2.6 Information about Plug-In Data Types
Plug-in check functions may create and use user-defined data objects. The information about
the data types of these objects is retrieved from the DLL in a similar way as the check
function capabilities. The two routines serving this purpose are:

extern "C" unsigned int WINAPI PI_GetNumberOfDataTypes(void)

is called after the iteration over the plug-in check function capabilites. It must return the
number of user-defined data types used by the plug-in check functions. NeuroCheck uses this
number to allocate the required number of data type info blocks.
The following function returns information about the properties of individual plug-in data
types.

extern "C" BOOL WINAPI PI_GetDataTypeDesc(
unsigned short int uiIndex,
sPI_TYPE_DESC* const psTypeDesc)

It is called in a loop after PI_GetNumberOfDataTypes()once for each type. The loop
counter is passed in uiIndex (counted from 0 up to the return value of PI_
GetNumberOfDataTypes() minus 1). In psTypeDesc NeuroCheck passes the address
of the allocated info block for the current type. Function PI_GetDataTypeDesc() has to
fill in the information about the data type indicated by the index into the members of this info
structure.

Interface Description 25

2.3 Memory Management

2.3.1 Output Data Objects of NeuroCheck Data Types
Plug-in check functions can create output data objects of the NeuroCheck data types (image,
layer of regions, histogram, measurement list) just like built-in functions. Data objects created
by build-in functions are deleted after the check routine has been completely executed. To
enable NeuroCheck to delete objects dynamically allocated by plug-in check functions in the
same way (and to free the plug-in DLL programmer from managing these objects himself) all
objects of a NeuroCheck data type must be allocated using the virtual heap API function:

extern "C" VOID * WINAPI VirtualAlloc(
LPVOID lpAddress,
DWORD dwSize,
DWORD flAllocationType,
DWORD flProtect)

VirtualAlloc initializes all elements of the allocated memory block to 0.

Important: NeuroCheck de-allocates all dynamical output data returned by the execution
routine, independently of the result of the routine. If you de-allocate data objects (with
VirutalFree) already inserted in the NeuroCheck container structure, always assign a
NULL value to the freed pointer.

2.3.2 Output Data Objects of Plug-In Data Types
In addition to the NeuroCheck data types, each plug-in DLL can register its own data types.
Only plug-in check functions registered by the same DLL may create output data objects of
the plug-in data types. These output data objects are allocated by the execution routine of the
plug-in check function. The plug-in DLL programmer must manage these objects himself
which implies that he can choose the way of memory allocation for the data objects.
The objects can be passed on to other plug-in functions which belong to the same DLL. For
efficient use, the user-defined data objects are passed as pointers and will only be interpreted
inside the plug-in functions using them. Since NeuroCheck cannot interpret these objects, it is
not able to delete their dynamically allocated data structure. For freeing the allocated memory,
NeuroCheck calls the destroy routine of the plug-in data type passing the pointer to the data
structure to be de-allocated. For de-allocation, the plug-in DLL must use the operator
matching the allocation operator previousely used to create the object.

2.3.3 Custom Result Views
Each plug-in check function may create its own result view displayed by NeuroCheck in the
Result View pane of the function in manual or test mode or in its visualization window in
automatic mode. For retrieving the current output of a custom view, NeuroCheck calls the
plug-in check function’s view create routine. This routine returns a handle to a bitmap to be
displayed. The plug-in programmer must manage the bitmap objects himself. For
convenience, he may use the NeuroCheck API functionality provided for bitmap management.
When the bitmap handle can be released, NeuroCheck calls the plug-in check function’s view
destroy routine. For de-allocation, the plug-in DLL must use the operator matching the

26 NeuroCheck Programmer’s Reference

allocation operator previousely used to create the object.

2.3.4 Data Output to File or RS232 Serial Interface
For output to file or RS232 serial interface, a data output routine can be registered for each
plug-in data type. Calling this routine, a container is passed for returning a data sequence
which NeuroCheck will write to file or serial interface. This data sequence must be allocated
by the plug-in DLL using VirtualAlloc and will be de-allocated by NeuroCheck.

2.3.5 Note
The above applies to output data objects collected in the NeuroCheck data pool only.
Functions inside the plug-in DLL may of course allocate dynamical data for internal use using
the new operator and free it using delete. Just make sure that all memory allocated inside
the DLL is released again. Memory allocated inside the initialization routine may be freed in
the deinitialization routine, because both routines will be executed only once during the
lifetime of the plug-in check function, but memory allocated inside the execution or parameter
dialog routines must be freed inside the same routine, because these may be executed
arbitrarily often.

2.4 The Plug-In Menu
After loading a plug-in DLL NeuroCheck reads the definition of a plug-in menu from the
resource portion of the DLL. Menu items of such a menu are appended to the Tools menu.
NeuroCheck distinguishes between a menu for manual mode and a menu for automatic mode.
Refer to the description of the included sample DLL for implementation details.

2.4.1 Manual Mode Menu
The manual mode menu has a predefined resource ID of 0x6000. Other IDs may interfere
with internal functions of NeuroCheck.

2.4.2 Automatic Mode Menu
The automatic mode menu has a predefined resource ID of 0x6001. Other IDs may interfere
with internal functions of NeuroCheck.

2.4.3 Menu Items
The number of user-defined menu items is restricted to 256. The resource IDs of the menu
items have to be within a range from 0xD000 to 0xD100. Other IDs may interfere with
internal functions of NeuroCheck.

2.4.4 Menu Handler
When one of the custom menu commands is selected during runtime, NeuroCheck calls
function

extern "C" void WINAPI PI_MenuCommand(HWND hwndMain,
 unsigned int uiCmdId)

Interface Description 27

In hwndMain the handle of the main application window is passed to the function. uiCmdId
receives the resource ID of the selected menu item.

2.5 Structure of a Plug-In Check Function
This section describes the possible capabilities of plug-in check functions and the declarations
of the routines making up a plug-in check function. A plug-in check function is implemented
through six distinct routines:
1. Initialization routine.
2. Execution routine.
3. Deinitialization routine.
4. Parameter dialog routine.
5. Custom view create routine.
6. Custom view destroy routine.
The names of these functions are unimportant, because NeuroCheck calls them through
function pointers in the function info structure. The declarations though are fixed.
Apart from the parameter dialog routine and the two visualization routines, all routines have
to exist for every plug-in check function.

2.5.1 Capabilities of Plug-In Check Functions
Plug-in check functions can have a parameter area of (in principle) unlimited size.
NeuroCheck manages this as an unstructured memory block, i.e. as a byte array. Only the
DLL routines themselves can change the values inside this block so that the programmer of a
plug-in DLL can rely on NeuroCheck never to interfere with the inner workings of the
parameter area. There are only two ways for NeuroCheck to change the parameter area and
both of them make use of values set within the DLL routines:
1. The undo function copies the most recent version of the parameter area into the current

parameter block.
2. The Copy / Paste Parameters functions copy a parameter block from one function into

the block of another function. The unique identification numbers required for plug-in
check functions ensure that only compatible blocks are copied.

Plug-in check functions can use up to five input data objects of the various NeuroCheck data
types (image, layer of regions, histogram, measurement list) or some plug-in data type
registered by the function’s plug-in DLL. It can create up to five dynamical output data
objects of these types (see section „Memory Management“ about conventions for the
administration of these data objects). Some restrictions apply to the operations on the
dynamical input data objects allowed within a plug-in check function. See chapter „Data
Types and Objects“ for details.

2.5.2 Initialization Routine
The initialization routine of a plug-in check function has to be declared as follows (excepting
the actual name of course):

BOOL WINAPI InitFunction(
sPI_CONTEXT_INFO* const psContext,
void* const pParameter);

28 NeuroCheck Programmer’s Reference

In psContext NeuroCheck passes information about the current context of the plug-in
check function. This might be useful because plug-in check functions may have to behave
differently for an other context. For instance, a function may have different behaviour in
automatic and in manual mode. The following structure is used by NeuroCheck for context
information:

typedef struct
{

int iSingleCheckIndex;
int iCheckFunctionIndex;
int iOID;
int iMode;

} sPI_CONTEXT_INFO;

The structure elements have the following meaning:

Element Description

iSingleCheckIndex
Current index of single check the plug-in check-function belongs
to. For start and end actions, a special negative index is given.

iCheckFunctionIndex
Current index of plug-in check function within single check.

iOID Object identification number (OID) of plug-in check function.
This number is unique within the check routine.

iMode Current operating mode. Can have one of the following values,
declared as symbolic constants in pi_types.h:
NC_MODE_MANUAL manual mode.
NC_MODE_TEST test mode.
NC_MODE_LIVE live mode.
NC_MODE_AUTOMATIC automatic mode.
NC_MODE_AUTOCONFIG configure automatic screen mode.
NC_MODE_INTRO HTML introduction mode.

All elements of the structure have to be considered „read-only“. Please note that this also
applies to all other functions which are passed context information.
In pParameter NeuroCheck passes the address of a memory block reserved for the
function parameters according to the size given in the function info block. pParameter is
passed as constant pointer which means that the pointer itself must not be changed.
Nevertheless, it is well possible to change the contents of the memory block the pointer is
pointing to after casting it to the appropriate type. If no memory block has been reserved due
to size 0 given in the function info block, the pointer will be NULL. Please note that this also
applies to all other functions which are passed the parameter memory block.
The initialization routine is called whenever NeuroCheck creates an instance of the respective
plug-in check function, i.e. when this plug-in check function is appended to or inserted into a
check routine, or when a check routine is loaded which contains this plug-in check function. It
will typically be used for setting default parameters.

Interface Description 29

NeuroCheck evaluates the function return value. If the function returns FALSE NeuroCheck
assumes that the initialization failed. The check function will not be added to the check
routine (or the check routine will not be loaded).

Hint: Since the initialization routine is executed when the check function is first added to a
check and also when the check routine is loaded from file, it is useful, to indicate in the
parameter area, whether parameters have already been edited for this function.
A simple method would be to use the first byte of the parameter area as an initialization flag.
Before the check function is actually added to the check routine the whole parameter block
will be filled with zeroes. The initialization should set default parameters values only if the
first byte is indeed zero and then set the byte to a different value. This ensures that altered
parameters will not be inadvertently reset to default values. It might also be useful to encode a
version information, e.g. in the second byte, in case of changes to the structure of the
parameter area between two versions of a plug-in DLL. Please note, that this only works, if
the size of the memory block reserved for the parameter set remains identical between two
versions of a plug-in check function because NeuroCheck will fail to load a plug-in check
function from a check routine if it had been saved with a differently sized parameter areas.

2.5.3 Execution Routine
The execution routine of a plug-in check function has to be declared as follows:

BOOL WINAPI ExecuteFunction(
sPI_CONTEXT_INFO* const psContext,
void* const pParameter,
void* const * const ppvDynInput,
void* * const ppvDynOutput);

In psContext NeuroCheck passes the function's current context information, in
pParameter the address of its parameter block. ppvDynInput is a container of the input
data objects required in the function info block, i.e. it is an array of the addresses of the
objects. It has at most five valid members. For a function without dynamical input data objects
no object will be valid. For a function requiring one input data object, ppvDynInput[0]
will contain the address of this object, the other members will not be valid, etc. The addresses
have to be casted inside the function to the respective input data type: either a NeuroCheck
data type (image, histogram, region layer, measurement list) or a user-defined data type
registered in the plug-in DLL containing the plug-in check function.
Both the address of the container and the addresses of the input objects are passed as constant
pointers which means that they must not be altered or de-allocated. However, it is possible to
alter the value of a member of an input data object inside the execution routine unless this
member is read-only.
Similarly, ppvDynOutput is a container for the possible output data objects. Please note,
that the addresses of the output object pointers are not constant, i.e. the execution routine
creates the required output objects and assignes their addresses to the elements of
ppvDynOutput. See the example DLL for more information.
This routine is executed whenever NeuroCheck encounters the respective plug-in check
function during a check routine run. The return value of the function determines the further
behavior of NeuroCheck. If the function returns FALSE, the current individual check will be

30 NeuroCheck Programmer’s Reference

terminated with status not O.K. Every plug-in check function can be used as a decision
function in this way.

2.5.4 Deinitialization Routine
The deinitialization routine of a plug-in check function has to be declared as follows:

void WINAPI DeInitFunction(
sPI_CONTEXT_INFO* const psContext,
void* const pParameter);

In psContext NeuroCheck passes the function's current context information, in
pParameter the address of its parameter block.
This routine is executed whenever NeuroCheck removes an instance of the pertaining plug-in
check function, i.e. when deleting the function from a check routine, deleting the whole check
or closing the check routine. If the initialization routine performed any activities affecting the
whole DLL, program or system (like allocating dynamic memory or opening communication
channels) the effects can be reverted here. Therefore the function is allowed access to the
parameter area in order to be able to react to the current parameter set. Changes to the
parameter set will have no effect for this function.

2.5.5 Parameter Dialog Routine
The parameter dialog routine of a plug-in check function has to be declared as follows:

BOOL WINAPI ParameterDialog(
HWND hwndApp,
sPI_CONTEXT_INFO* const psContext,
void* const pParameter,
void* const * const ppvInputData);

In psContext NeuroCheck passes the function's current context information, in
pParameter the address of its parameter block. In hWndApp NeuroCheck passes a handle
for the parent window. ppvInputData is an array of the addresses of the required input
data objects equivalent to the argument ppvDynInput of the execution routine. The
function handling the dialog has to cast these addresses to pointers of the correct type for the
respective input data object. The input objects should be considered read-only, i.e. any
changes will have no effect. See the example DLL for more information.
This routine is executed whenever one of the events occurs which would open the parameter
dialog of a build-in check function in NeuroCheck , e.g. choosing Parameters from the
Check Function menu.

2.5.6 Custom Visualization Routines
For custom visualization, a plug-in check function must register two routines, the view create
routine and the view destroy routine. They have to be declared as follows:

BOOL WINAPI ViewCreate(
sPI_CONTEXT_INFO* const psContext,
sPI_VIEW_INFO* const psViewInfo,
HANDLE* hView,
void* const pParameter,

Interface Description 31

void* const * const ppvInputData,
void* const * const ppvOutputData);

BOOL WINAPI ViewDestroy(
sPI_VIEW_INFO* const psViewInfo,
HANDLE* hView);

For the view create routine, NeuroCheck again passes the function's current context
information in psContext, and the address of its parameter block in pParameter. In
addition, both visualization routines are passed specific information for visualization in
psViewInfo. The following structure is used by NeuroCheck for visualization information:

typedef struct
{

unsigned int uiViewIndex;
unsigned int uiViewType;
unsigned int uiAddInfo;
int iExecuteErrorCode;

} sPI_VIEW_INFO;

The structure elements have the following meaning:

Element Description

uiViewIndex Index of custom view registered for plug-in check function.

uiViewType Type of view. Can have only one possible value, declared as
symbolic constant in pi_types.h:
PI_VIEW_BITMAP handle to bitmap is returned.

uiAddInfo Additional informaion. Value indicates current zoom factor of
result view. Can have one of the following values, declared as
symbolic constants in pi_types.h:
NC_ZOOM_10 10 % of original image size.
NC_ZOOM_25 25 % of original image size.
NC_ZOOM_50 50 % of original image size.
NC_ZOOM_100 100 % of original image size.
NC_ZOOM_200 200 % of original image size.

iExecuteErrorCode Error code for most recent call to execution routine of the plug-in
check function. Can have one of two values, declared as symbolic
constants in pi_types.h:
NC_EXE_OK execution result was "O.K.".
NC_EXE_NOK execution result was "not O.K.".

All elements of the structure have to be considered „read-only“.

In hView the view create routine returns a handle to a bitmap which will be displayed by
NeuroCheck in the Result View pane of the plug-in check function in manual mode or in its
visualization window in automatic mode. This handle will be passed at the succeeding call to
the view destroy routine when the handle can be released.
In addition, in ppvInputData and ppvOutputData the current input and output data
objects of the most recent execution of the plug-in check function are passed to the view
create routine. Both input and output objects should be considered „read-only“. Please note

32 NeuroCheck Programmer’s Reference

that if the execution result had been "not O.K.", the output data objects may not be valid and
thus be assigned NULL pointers.
In manual mode the view routine is called directly after a call to the execution routine, or
upon changing settings of the currently displayed view in the Result View pane, e.g. view
index or zoom factor. Please note that in manual mode NeuroCheck allows subdivision of the
Result View pane into two horizontal panes and thus actually provides two views. So directly
after a call to the execution routine, the view routine is always executed twice.
In automatic mode, the view routine is called immediately after execution of the plug-in check
function once for each of the function’s visualization windows.
The view create routine is allowed access to the plug-in check function’s context, parameter
set and input and output data. Thus, the function can react to the current settings and perform
a custom visualization. This may include visualization of input and output data, of final or
intermediate results, or even of specific messages.

2.6 The Function Info Block
Function PI_GetFctCaps(uiIndex, psFctDesc) has to fill the function info block
whose address is passed in psFctDesc for every possible index uiIndex with the
characteristics of the respective plug-in check function. This section describes the structure of
the function info block and the meaning of its members.

2.6.1 Function Info Block Declaration
The function info block is declared as follows (detailed explanations of the individual sections
follow below):

typedef struct
{

// version control
unsigned int uiStructSize;

// data
unsigned int uiFunctionId;
unsigned int uiHelpContext;
unsigned int uiNumOfInputData;
unsigned int uiNumOfOutputData;

unsigned int uiSizeOfParameter;
unsigned int uiNumOfViews;
unsigned int uiDataOutput;

// pointer
// - data
int* piTypeOfInputData;
int* piTypeOfOutputData;
int* piMaskFileOutput;
int* piMaskRs232Output;

// - strings
LPSTR lpszFunctionName;
LPSTR lpszDescription;
LPSTR lpszHintPos;
LPSTR lpszHintNeg;
LPSTR* alpszCustomViewNames;

Interface Description 33

LPSTR* alpszInputViewNames;
LPSTR* alpszOutputViewNames;

// - functions
PFNPlugInFctInitialize pfnInitialize;
PFNPlugInFctExecute pfnExecute;
PFNPlugInFctUnInitialize pfnUnInitialize;
PFNPlugInFctParameterDlg pfnParameterDlg;
PFNPlugInFctViewCreate pfnViewCreate;
PFNPlugInFctViewDestroy pfnViewDestroy;

}
sPI_FCT_DESC;

2.6.2 General Information
The data area of the function info block contains the following elements:

Element Description

uiStructSize NeuroCheck allocates the info block and initializes each element
to 0 with the exception of its first element uiStructSize. This
element contains the size of the info block as returned by the
sizeof()function. The value of uiStructSize should be
considered read-only and can be used inside the plug-in DLL to
verify that NeuroCheck and the plug-in DLL use the same
declaration of the sPI_FCT_DESC structure. If the value of
uiStructSize and the return value of
sizeof(sPI_FCT_DESC)are not equal, there is a version
conflict between the plug-in interface provided by NeuroCheck
and the one expected by the DLL.

uiFunctionId Unique identification number for the plug-in function.
NeuroCheck uses this number for various purposes, among them
identifying functions when loading a check routine. For this
reason plug-in check functions inside a single plug-in DLLs must
not use identical function IDs.
NOTE: function IDs from 0xE0000000 upwards are reserved
for use by NeuroCheck GmbH and partners. This leaves more
than 3.75 * 109 entries free for customer use, ample space even
for organizing the most extensive projects.

uiHelpContext The context number NeuroCheck will pass to Winhelp when you
choose Info from the Check Function menu or the Help button
in the Select New Check Function dialog for a plug-in check
function.

uiNumOfInputData Number of expected input data objects. A plug-in check function
can use up to PI_MAXDYNDATA input data objects. This
symbolic constant is defined in pi_types.h with a value of 5.

34 NeuroCheck Programmer’s Reference

uiNumOfOutputData Number of created output data objects. A plug-in check function
can create up to PI_MAXDYNDATA output data objects. This
symbolic constant is defined in pi_types.h with a value of 5.

uiSizeOfParameter Size of function parameter area. NeuroCheck treats the parameter
array as an unstructured byte array of this size. Please note that
changes to the size of the parameter area are crucial. NeuroCheck
will not be able to load a plug-in check function from a check
routine saved with a different size of the parameter area than
expected while loading. If further parameters can be expected in
future versions of a plug-in check function, it is advisable to
reserve more than the currently needed memory space, giving the
chance of maintaining downward compatibility. If the size of the
parameter area indeed needs to be changed, it is recommended
also to alter the function identification number.

uiNumOfViews Number of user-defined views of the plug-in check function. If
the element is larger than 0, the plug-in check function must
provide a view routine and a name for each of the views.

uiDataOutput Switch indicating whether the plug-in intends to take part in the
standard NeuroCheck data output processes. The element should
be 1 when the plug-in function provides standard output
capabilities, it should be 0 if it does not provide any output
capability.

2.6.3 Input / Output Data Object Description
The pointer area of the function info block contains two pointers which must be assigned to
static arrays with at least uiNumOfInputData resp. uiNumOfOutputData elements
each stating the types of the expected input and created output data objects respectively.
NeuroCheck uses only the first elements of the two arrays, up to the number of elements
stated in uiNumOfInputData resp. uiNumOfOutputData. The information in these
arrays is used for the Input Data Configuration dialog and for passing pointers to dynamic
data objects during runtime.

Element Description

piTypeOfInputData Pointer to be assigned with static array stating the types of
expected input data objects.

piTypeOfOutputData Pointer to be assigned with static array stating the types of created
output data objects.

The following symbolic constants are declared in pi_types.h for identifiying the possible
types of data objects:

Interface Description 35

Constant Description

PI_IMAGE Data object is an image.

PI_HISTO Data object is a histogram.

PI_LAYER Data object is a layer of regions of interest.

PI_MEASARRAY Data object is a measurement array.

In addition, a plug-in check function can also use data objects of user-defined types registered
in its plug-in DLL.

2.6.3.1 Example
The following assignments describe the input / output structure of a function using a gray
level image, a histogram and a layer of regions to create a measurement array and a user-
definined data type registered with ID 0x1003:

uiNumOfInputData = 3;
static int InputData[] = { PI_IMAGE,

 PI_HISTO,
 PI_LAYER };

piTypeOfInputData = InputData;
uiNumOfOutputData = 2;
static int OutputData[] = { PI_MEASARRAY,

 0x1003 };
piTypeOfOutputData = OutputData;

2.6.4 Data Output Description
The pointer area of the function info block contains two more pointers. In case of
uiDataOutput equal to 1, both pointers must be assigned to static arrays with at least
uiNumOfOutputData elements, each stating if the respective output data objects can take
part in the standard NeuroCheck data output to file or to serial interface, respectively.
NeuroCheck uses only the first elements of the two arrays, up to the number of elements
stated in uiNumOfOutputData. The information in these arrays is used for providing
output symbols on the Data Output View in manual mode. If data output has been configured
for the check routine, NeuroCheck will output the
indicated data objects during automatic mode. For
objects of a user-defined data type, NeuroCheck will call
the dump routine of the respective type whereas output of
objects of a standard NeuroCheck data type (image, layer
of regions, histogram, measurement list) will be done
automatically.

Element Description

piMaskFileOutput Pointer to be assigned with static array containing flags for the
created output data objects for output to file.

36 NeuroCheck Programmer’s Reference

piMaskRs232Output Pointer to be assigned with static array containing flags for the
created output data objects for output to RS232 serial interface.

The arrays can be seen as mask for enabling the output of output data objects. If element of
index i is set to 0 (or FALSE), there will be no output for the data object with index i. If the
element is set to 1 (or TRUE), output of the respective object is enabled. NeuroCheck will
offer the necessary icons on the Data Output View in manual mode and write the required data
to file or RS232 serial interface if
• output to the respective destination has been activated in Data Output View globally for

the whole check routine,
• output to the respective destination has been activated for the instance of the plug-in

check function locally,
• the plug-in check function has been executed successfully during automatic mode
Please note, that output of images (type PI_IMAGE) is treated differently to all other data
types. Output of images to serial interface is not possible, i.e. enabling an output object of
type PI_IMAGE in mask piMaskRs232Output will be ignored. Output of images to file
will not append the image data to the data file configured in NeuroCheck. Instead,
NeuroCheck will output the images to bitmap files with sequentially numbered names. Please
refer to the NeuroCheck User Manual for a detailed description of the output capabilities of
NeuroCheck.

2.6.4.1 Example
The following assignments enable the output to file of the first data output object created by
the plug-in check function, and output to both file and serial interface of the second one for
the output data object description specified in Example 2.6.3.1.

uiDataOutput = 1;
static int FileOutput[] = { TRUE,

 TRUE };
static int Rs232Output[] = { FALSE,

 TRUE };
piMaskFileOutput = FileOutput;
piMaskRs232Output = Rs232Output;

2.6.5 Descriptive Texts
The string area of the function info block contains four pointers to user-defined strings used
for display in the Select New Check Function dialog box. The pointers have to refer to static
data elements in the DLL. The strings implement the same level of information in the dialog
as for built-in check functions. A recommended maximum size is given although the length of
the strings is not limited in principle.

Element Description

lpszFunctionName Name of function (used in the Select New Check Function dialog,
the check routine tree view, protocol files etc.).
Recommended string length: max. 40 chars.

Interface Description 37

lpszDescription Descriptive text for the function.

lpszHintPos Hint displayed in the Select New Check Function dialog when the
function can be inserted into the check routine at the current
position.
Recommended string length: max. 80 chars.

lpszHintNeg Hint displayed in the Select New Check Function dialog when the
function cannot be inserted into the check routine at the current
position (due to lack of required input data objects).
Recommended string length: max. 80 chars.

alpszCustomViewNames
List of names for the custom result views of the plug-in check
function which will be displayed in the combo box of the Result
View pane of NeuroCheck in manual mode. The list must contain
uiNumOfViews strings.
Recommended string length: max. 40 chars.

alpszInputViewNames, alpszOutputViewNames
List of names for the standard result views for input and output
data objects of the plug-in check function which will be displayed
in the combo box of the Result View pane of NeuroCheck in
manual mode. The lists must contain uiNumOfInputData
resp. uiNumOfOutputData strings If not specified, predefined
names like Gray level image (In) are used.
Recommended string length: max. 40 chars.

2.6.6 Function Pointers
The function pointer area of the function info block contains the following elements:

Element Description

pfnInitialize Pointer to initialization routine.

pfnExecute Pointer to execution routine.

pfnUnInitialize Pointer to deinitialization routine.

pfnParameterDlg Pointer to parameter dialog routine.

pfnViewCreate Pointer to view create routine.

pfnViewDestroy Pointer to view destroy routine.

The pointers have been defined using function types declared in pi_types.h. Since the
individual routine has to adhere to the conventions described in section „Plug-in Check
Functions“ function addresses can be assigned directly.
Apart from the parameter dialog routine and the two visualization routines all routines have to

38 NeuroCheck Programmer’s Reference

exist for every plug-in check function.
If the parameter dialog routine is missing pfnParameterDlg has to be assigned a NULL
pointer. If the custom visualization is missing pfnViewCreate and pfnViewDestroy
have to be assigned a NULL pointer and uiNumOfViews has to be assigned a value of 0.

2.7 Structure of a Plug-In Data Type
This section describes the possible capabilities of plug-in data types and the declarations of
the routines related to it. A plug-in data type is implemented through two distinct routines:
1. Data output routine.
2. Destroy routine.
The names of these functions are unimportant, because NeuroCheck calls them through
function pointers in the type description structure. The declarations though are fixed. All
routines must exist for every plug-in data type.

2.7.1 Capabilities of Plug-In Data Types
Plug-in data types can be used for passing arbitrary data between plug-in check functions of
the same DLL. Each data object can be of (in principle) unlimited size. NeuroCheck manages
this data object as pointer. Only the DLL routines themselves can change the data object so
that the programmer of a plug-in DLL can rely on NeuroCheck never to interfere with the
inner workings of the object.
Plug-in data types offer a convenient way to pass on arbitrary data to another plug-in check
function. Using the view routines of the plug-in check function, this data can be visualized in
NeuroCheck. The data output routine enables output of the data to file or RS232 serial
interface in the same way as the standard NeuroCheck data types (with the exception of
PI_IMAGE). Of course, the plug-in programmer may also implement a custom output in the
data output routine.

2.7.2 Data Output Routine
The data output routine of a plug-in data type has to be declared as follows (excepting the
actual name of course):

BOOL WINAPI DataOutput(sPI_TARGET_INFO* const psTargetInfo,
 void* const pData,
 sPI_DATAOUTPUT_INFO* psDataContainer);

In psTargetInfo NeuroCheck passes information about the output target for which the
data output routine is called. The following structure is used for the target description:

typedef struct
{

unsigned int uiType;
LPSTR lspzName;

} sPI_TARGET_INFO;

The structure elements have the following meaning:

Element Description

uiType Type of target. Can have one of two values, declared as symbolic

Interface Description 39

constants in pi_types.h:
PI_TARGET_FILE: Output to data file.
PI_TARGET_RS232: Output to RS232 serial interface.

lspzName Name of target as a zero-terminated string. For output to data file,
the string contains the full name of the output file. For output to
RS232 serial interface, the string contains the name of the COM
port.

All elements of the structure have to be considered „read-only“.
In pData NeuroCheck passes the address of the data object allocated previously inside the
execution routine. It is passed as constant pointer which means that the pointer itself must not
be changed. In psDataContainer the address of an allocated data container is passed to
the routine for returning the data sequence that NeuroCheck will write to the given output
target. The following structure is used for the data container:

typedef struct
{

unsigend int uiCount;
sPI_DATAOUTPUT_ITEM* psDataItem;

}
sPI_DATAOUTPUT_INFO;

The structure elements have the following meaning:

Element Description

uiCount Number of data items, i.e. length of array psDataItem.

psDataItem Array of data items. The array must be allocated by the plug-in
DLL using VirtualAlloc. De-allocation will be handled by
NeuroCheck.

Each data item can be either an integer value, a floating-point value, or a string value. The
following structure is used for the data items:

typedef struct
{

unsigned int uiType;
int iData;
float fData;
char* pszData;

}
sPI_DATAOUTPUT_ITEM;

The structure elements have the following meaning:

Element Description

uiType Type of data item. Can have one of three values, declared as
symbolic constants in pi_types.h:
PI_ITEM_INT item is integer value in iData.
PI_ITEM_FLOAT item is floating point value in fData.
PI_ITEM_STRING item is string value in pszData.

iData Integer value of data item.

40 NeuroCheck Programmer’s Reference

fData Floating point value of data item.

pszData String value of data item. The string must be allocated by the
DLL using VirtualAlloc pszData. Please note that
pszData must be assigned to NULL if iType is not
PI_ITEM_STRING.

2.7.2.1 Example
The following sample code shows how to output the three different types of data (Int, Float
and String), assuming that the plug-in data object was defined as structure
sMY_DATA_TYPE:

typedef struct
{

int iData; // integer value
float fData; // float value

} sMY_DATA_TYPE;

BOOL WINAPI DataOutput(sPI_TARGET_INFO* const psTargetInfo,
void* const pData,
sPI_DATAOUTPUT_INFO* psDataOutputInfo)

{

// verify data pointer
if (pData == NULL) return FALSE;

// type cast of data pointer
sMY_DATA_TYPE* psMyData = (sMY_DATA_TYPE *) pData;

// output of 3 elements: int, float and string
psDataOutputInfo->uiCount = 3;

// allocate memory for the elements (using the v-heap api!)
psDataOutputInfo->psDataItem = (sPI_DATAOUTPUT_ITEM*) VirtualAlloc(

NULL,
(DWORD)(psDataOutputInfo->uiCount *

sizeof(sPI_DATAOUTPUT_ITEM)),
MEM_COMMIT,
PAGE_READWRITE);

// insert integer element
psDataOutputInfo->psDataItem[0].uiType = PI_ITEM_INT;
psDataOutputInfo->psDataItem[0].iData = psMyData->iIntegerValue;

// insert float element
psDataOutputInfo->psDataItem[1].uiType = PI_ITEM_FLOAT;
psDataOutputInfo->psDataItem[1].fData = psMyData->fFloatValue;

// get element for string output
sPI_DATAOUTPUT_ITEM* psItem = &psDataOutputInfo->psDataItem[2];

// insert string element
psItem->uiType = PI_ITEM_STRING;

// create string for output
CString csOutputString = "Example for output of a string!";

// get string length

Interface Description 41

int iStrLen = (int) csOutputString.GetLength();

// zero terminated string!
iStrLen += 1;

// allocate memory for string (using the v-heap api!)
psItem->pszData =

(char *) VirtualAlloc(NULL,
(DWORD)(iStrLen * sizeof(char)),
MEM_COMMIT,
PAGE_READWRITE);

// copy string
strcpy(psItem->pszData, csOutputString.GetBuffer(iStrLen));

return TRUE;

} // DataOutput

2.7.3 Destroy Routine
The destroy routine of a plug-in check function has to be declared as follows (excepting the
actual name of course):

void WINAPI TypeDestroy(void* pbyData);

In pbyData NeuroCheck passes the address of the data object allocated previously inside the
execution routine. The destroy routine is called whenever a data object of this plug-in data
type is to be de-allocated. Usually this will be before the next execution of the single check
containing the plug-in check function that created such an object. Inside the destroy routine,
the data passed in pbyData should be de-allocated using an operator that matches the
operator previously used for allocation.

2.8 The Type Description Block
Function PI_GetTypeDesc(uiIndex, psFctDesc) has to fill the type description
block whose address is passed in psFctDesc for every possible index uiIndex with the
characteristics of the respective plug-in data type. This section describes the structure of the
type description block and the meaning of its members.

2.8.1 Type Description Block Declaration
The type description block is declared as follows (detailed explanations of the individual
sections follow below):

typedef struct
{

// version control
unsigned int uiStructSize;

// data
unsigned int uiTypeId;
int iIconIndex;

// - strings
LPSTR lpszTypeDesc;

// - function pointer
PFNPlugInTypeDataOutput pfnDataOutput;

42 NeuroCheck Programmer’s Reference

PFNPlugInTypeDestroy pfnTypeDestroy;
}

sPI_TYPE_DESC;

2.8.2 General Information
The data area of the type description block contains the following elements:

Element Description

uiStructSize NeuroCheck allocates the block and initializes each element to 0
with the exception of its first element uiStructSize. This
element contains the size of the type description block as returned
by the sizeof()function. The value of uiStructSize
should be considered read-only and can be used inside the plug-in
DLL to verify that NeuroCheck and the plug-in DLL use the same
declaration of the sPI_TYPE_DESC structure. If the value of
uiStructSize and the return value of
sizeof(sPI_TYPE_DESC)are not equal, there is a version
conflict between the plug-in interface provided by NeuroCheck
and the one expected by the DLL.

uiTypeId Unique identification number for the plug-in data type.
NeuroCheck uses this number for various purposes, among them
identifying data types used by a plug-in check function. For this
reason plug-in data types inside a single plug-in DLLs must not
use identical type IDs.
NOTE: type IDs of plug-in data types must not interfere with the
type IDs of NeuroCheck data types. Therefore the IDs must be
within a range limited by symbolic constants
DATATYPE_ID_MIN and DATATYPE_ID_MAX declared in
pi_types.h. All values outside this range are reserverd for use
by NeuroCheck GmbH and partners. The symbolic constants
currently are defined to 0x1000 and 0x2000, which leaves
4096 entries for custom use.

iIconIndex Identification number of icon that will be used by NeuroCheck
for the plug-in data type. If iIconIndex contains a negative
value, then NeuroCheck will display a default icon for the plug-in
data type.

lpszTypeDesc Descriptive text for the plug-in data type.
The pointers has to refer to a static data element in the DLL. The
length of the string must not exceed 40 characters.

Interface Description 43

2.8.3 Function Pointers
The function pointer area of the type description block contains the following elements:

Element Description

pfnDataOutput Pointer to data output routine.

pfnTypeDestroy Pointer to destroy routine of plug-in data type.

The pointers have been defined using function types declared in pi_types.h. Since the
individual routine has to adhere to the conventions described in section „Plug-in Check
Functions“ function addresses can be assigned directly.
Both the data output and the destroy routine have to exist for every plug-in data type.

3 Data Types and Definitions

This chapter describes the data types and definitions for the use of dynamic data objects
declared in the included header file pi_types.h. Please note that in several cases different
rules apply for access to an input data objects and for creating an output data object of the
same data type.

3.1 Image
The following structure is used by NeuroCheck for images:

typedef struct
{

unsigned int uiWidth;
unsigned int uiHeight;
BOOL bColor;
BYTE* pbyGrayValue;
BYTE* pbyRedValue;
BYTE* pbyGreenValue;
BYTE* pbyBlueValue;
int iSource;
LPCTSTR lpszSourceName;

} sPI_IMAGE;

The structure elements have the following meaning:

Element Description

uiWidth Width of image in pixels.

uiHeight Height of image in pixels.

bColor TRUE for color image, FALSE for gray level image.

pbyGrayValue Pointer to array with gray level values.

pbyRedValue Pointer to array with values of red channel for color image, NULL
for gray level image.

pbyGreenValue Pointer to array with values of green channel for color image,
NULL for gray level image.

pbyBlueValue Pointer to array with values of blue channel for color image,
NULL for gray level image.

iSource Source of image. Can have one of the following values, declared
as symbolic constants in pi_types.h:
PI_IMSRC_FILE bitmap file.
PI_IMSRC_CAM camera.
PI_IMSRC_TRAY image tray.
PI_IMSRC_UNKNOWN cannot be determined, e.g. after an
addition of images.

46 NeuroCheck Programmer’s Reference

lpszSourceName Description of image source as a zero-terminated string, i.e. name
of bitmap file or name of camera. The contents of this string must
not be changed by a plug-in check function

Each array with pixel values (gray level or color) represents the pixel matrix of the image and
thus must have a size of uiWidth times uiHeight. The pixels are ordered according to the
NeuroCheck coordinate system which starts at origin (0,0) in the top left corner with its
positive X axis pointing to the right and its positive Y axis pointing downwards. In the array
representation, the lines of the image are simply appended.
For an input image object, a plug-in check function may only alter the pixel values of the gray
level array and, for color images only, of the three color channels. All other elements should
be considered „read-only“.
Allocating a new image object, all elements except iSource and lpszSourceName can
be assigned. Each image must have a valid gray level array of the size specified by uiWidth
and uiHeight. The array must be allocated with VirtualAlloc. In addition, each color
image must have a valid array for each color channel. Please note that for a color image the
gray level array always should be filled with valid values, too. For color images created by
NeuroCheck, the gray level array simply contains the same values as the green channel by
default.

3.2 Histogram
The following structure is used by NeuroCheck for gray level histograms with binarization
thresholds:

typedef struct
{

unsigned short int uiThreshold;
unsigned int auiHistoBuffer[256];

} sPI_HISTO;

The structure elements have the following meaning:

Element Description

uiThreshold Binarization threshold

auiHistoBuffer Array with number of pixels for each gray level.

Both for input and output objects, the value of uiThreshold and the values of
auiHistoBuffer can be modified or assigned.

3.3 Regions of Interest
In NeuroCheck regions of interest (ROIs) can be manually defined or dynamically created, i.e.
segmented from image objects. Regions are organized within layers which can contain both
types of objects. The description of this complex data structure is subdivided into the
following sections:

Data Types and Definitions 47

1. Layer of regions of interest.
2. Single region.
3. Object contour.
4. Object region.
5. Model geometries.
6. Creating a new region.

Please note, that where not indicated differently, for all coordinates the standard NeuroCheck
coordinate system applies which starts with its origin (0,0) in the top left corner of the image
with its positive X axis pointing to the right and its positive Y axis pointing downwards.

3.3.1 Layer of Regions of Interest
Every function creating regions of interest, be it manually or automatically through an object
search, generates exactly one layer of regions with the following structure:

typedef struct
{

unsigned int uiCount;
BOOL bMeasurement[300];
LPSTR lpszMeasurementName[300];
unsigned int uiClasses;
LPSTR* alpszClasses;
sPI_OBJECT* pasObject;

} sPI_LAYER;

The structure elements have the following meaning:

Element Description

uiCount Number of objects in layer.

bMeasurement Array of flags for the activation of individual feature values. The
various features are identified by symbolic constants defined in
pi_types.h.

lpszMeasurementName
Array of string pointers holding the names of the features
activated by bMeasurement. For an input list, these strings are
read-only. Creating a new output list, custom feature names can
be specified by assigning pointers to static strings.

uiClasses Number of classes available for the layer if its objects have been
classified. The class ID assigned to each object is given as feature
value. Class information is created by check functions Classify
ROIs, Template Matching, and Color Matching.

alpszClasses Array of class names. Element [i] of the array represents the
name of class ID i. These strings are read-only.

pasObject Pointer to array of region descriptions.

48 NeuroCheck Programmer’s Reference

NOTE: the only operations a plug-in check function may perform within this structure are
setting flags in the bMeasurement array to activate or deactivate features, and to specify
custom feature names when creating a new output list. The number of regions and the
addresses of the individual regions must not be changed! Thus a plug-in check function cannot
delete a region (but it can declare the object invalid so that a subsequent call to function
Screen ROIs removes the region. See section „Single Region of Interest“ for details).
Likewise a plug-in check function cannot add regions to a layer, but it can create a new layer,
copy regions to this layer and add additional objects internally.

3.3.2 Single Region of Interest
NeuroCheck uses the following structure to describe a single region of interest (ROI):

typedef struct
{

/* ------* Read only *------ */
int iType;
int iWidth;
int iHeight;
sPI_CONTOUR* psContour;
sPI_REGION* psRegion;
// model geometries
int iFitType;
float fFitParameters[10];

/* ------------------------------------- */
/* ------* Modify/Write *------ */
int iNumber;
int iGroupNumber;
BOOL bValid;
int iX;
int iY;
float fMeasurement[300];
/* -------* Write only *------ */
int iShapeType;
int iSearchReg;
sPI_POINTS* psPoints;

} sPI_OBJECT;

The structure elements have the following meaning:

Element Description

iType Type of ROI. Can have one of three values, declared as symbolic
constants in pi_types.h:
PI_OBJECTAOI: ROI contains an enclosing rectangle only.
PI_OBJECTCONTOUR: ROI also contains a valid contour, but
no region.
PI_OBJECTREGION: ROI also contains a valid contour and a
valid region.

iWidth, iHeight Width and height of enclosing rectangle.

psContour Description of the object contour.

Data Types and Definitions 49

psRegion Description of the object region.

iFitType Description of a model geometry calculated for the ROI. The
model geometry can be identified by symbolic constants defined
in pi_types.h.

fFitParameters Array with parameters of the calculated model geometry. See
„Model Geometries“.

iNumber Unique number of region inside a group.

iGroupNumber Group number of region.

bValid Validity of object, intended for user defined screening function.
These must not delete a region but declare it invalid by setting
this element to FALSE. NeuroCheck will remove all invalid
regions when the layer structure is read back to the internal
NeuroCheck format.

iX, iY Coordinates of the top left corner of the enclosing rectangle for
input objects, coordinates of reference point for output objects
(see „Creating a new Region of Interest.“).

fMeasurement Feature array. Only array elements for which the corresponding
element in the bMeasurement array of the layer structure is
TRUE contain valid information. Features can be identified by
symbolic constants defined in pi_types.h.

iShapeType Type of new ROI, declared as symbolic constants in
pi_types.h

iSearchReg Size of surrounding area in pixels for new ROI.

psPoints Description of new ROI for output object, NULL for input object.

The elements of the structure are seperated into three categories:
• „read-only“ elements
• „modify/write“ elements
• „write-only“ elements
„Read-only“ elements must not be changed for input objects nor be assigned for output
objects. For input objects, only „modify/write“ can be changed. Creating a new output data
object, the plug-in check function has to assign the „modify/write“ and „write-only“ elements
in the structure.
A plug-in check function altering „modify/write“ elements in the structure for an input object
has following effects:

Modify element Purpose

iNumber Changes sorting of regions.

50 NeuroCheck Programmer’s Reference

iGroupNumber Changes group membership of regions.

bValid Assigning FALSE lets region be removed.

iX, iY Changes position of region.

fMeasurement[i] Changes value of feature [i].

3.3.3 Object Contour
Polylines and ROIs created dynamically by object segmentation usually have an object
contour described by the following structure:

typedef struct
{

int iXStart;
int iYStart;
int iLength;
BYTE * pbyChain;

} sPI_CONTOUR;

The structure elements have the following meaning:

Element Description

iXStart, iYStart Coordinates of the first contour point, relative to enclosing
rectangle.

iLength Number of contour points.

pByChain Chain code of the contour. The elements of the chaing code
indicate the direction of the contour from the current point to the
next point. The following figure visualizes the possible values:

A plug-in check function must not change any values in this data structure, all elements are to
be considered „read-only“.

Example for Contour Description
The figure shows a dark octogon on a light background and the corresponding contour
description. The description of the enclosing rectangle is given by X=1, Y=1 and both width
and heigth equal to 4. The asterisk marks the start of the contour, the numbers next to each
section of the contour encode the direction of the connection between the two contour points.

Data Types and Definitions 51

iXStart = 0;

iYStart = 1;

iLength = 8;

pByChain [7, 0, 1, 2, 3, 4, 5, 6]

3.3.4 Object Region
ROIs created dynamically by object segmentation usually have an object region described by
the following structure:

typedef struct
{

int iLength;
int* piX;
int* piY;
int* piXLength;

} sPI_REGION;

The structure elements have the following meaning:

Element Description

iLength Length of run length code i.e. number of line segments.

piX, piY Arrays containing the X and Y coordinates of the starting
positions for each RLC line segment relative to enclosing
rectangle. Both pointers must be assigned to arrays of length
iLength.

piXLength Array containing the length in X direction of each line segment.
The pointer must be assigned to an array of length iLength.

A plug-in check function must not change any values in this data structure, all elements are to
be considered „read-only“.

Example for Region Description
The figure shows a dark octogon on a light background and the corresponding region
description. The description of the enclosing rectangle is given by X=1, Y=1 and both width
and heigth equal to 4. The numbers mark the start of each line segment and indicate the
ordering. For instance, the first line segment starts at the relative position X=1, Y=0 (absolute
position X=2, Y=1) and has a length of 2 pixels.

52 NeuroCheck Programmer’s Reference

iLength = 5;

piX [1, 0, 0, 0, 3]

piY [0, 1, 2, 3, 3]

piXLength [2, 4, 4, 1, 1]

3.3.5 Model Geometries
Each ROI can be assigned a model geometry as calculated by check function Compute
Model Geometries. The type of the model geometry can be identified by the value of
element iFitType. It can have one of four values, declared as symbolic constants in
pi_types.h:

Constant Meaning

PI_FIT_CONTOUR No specific model geometry calculated.

PI_FIT_POINT Model geometry is a single point.

PI_FIT_LINE Model geometry is a line.

PI_FIT_CIRCLE Model geometry is a circle.

Array fFitParameters contains the parameters describing the specified model geometry.
The meaning of the elements of array are listed in following table:

Model geometry Meaning of elements of fFitParameters

PI_FIT_CONTOUR If no specific model geometry is calculated, array
fFitParameters contains the coordinates of the center of
gravity of the object contour:
fFitParameters[0] X coordinate of center point
fFitParameters[1] Y coordinate of center point

PI_FIT_POINT The description of a point simply consists of its coordinates:
fFitParameters[0] X coordinate of point
fFitParameters[1] Y coordinate of point

PI_FIT_LINE The description of a line is given by the coordinates of its center
point and the parameters of its mathematical description, i.e.
slope parameter m and constant b. Furthermore, the two points of
intersection with the search area are given which represent the
start and end point of the line.

Data Types and Definitions 53

fFitParameters[0] X coordinate of center point
fFitParameters[1] Y coordinate of center point
fFitParameters[2] Slope parameter m
fFitParameters[3] Y axis parameter b
fFitParameters[4] X coordinate of start point
fFitParameters[5] Y coordinate of start point
fFitParameters[6] X coordinate of end point
fFitParameters[7] Y coordinate of end point

PI_FIT_CIRCLE The description of a circle is given by the coordinates of its
center point and its radius:
fFitParameters[0] X coordinate of center point
fFitParameters[1] Y coordinate of center point
fFitParameters[2] Radius in pixels

A plug-in check function must not change any values in fFitParameters, all elements are
to be considered „read-only“.

3.3.6 Creating a new Region of Interest.
Creating a new ROI, the modify and write-only elements of structure sPI_OBJECT must be
assigned. For simplicity, the plug-in check function creating the new ROI does not have to
calculate the chain code of its contour or the run length code of its region. Instead, the shape
of the new region is specified by a number of points described by the following structure:

typedef struct
{

int iLength;
int* piX;
int* piY;

} sPI_POINTS;

The structure elements have the following meaning:

Element Description

iLength Length of arrays, i.e. number of points.

piX, piY Arrays containing the X and Y coordinates of the points. Both
pointers must be assigned to arrays of length iLength. Please
note that the coordinates are relative to the reference point given
by parameters iX and iY in structure sPI_OBJECT.

The interpretation of the given points depends on the value of iShapeType. It can be
assigned one of following values, declared as symbolic constants in pi_types.h:

Constant Meaning

PI_SHAPE_AOI Rectangular AOI. The enclosing rectangle for the given points is
calculated. At least two points are required.

PI_SHAPE_POLY Polyline. The polyline is defined by drawing lines from point one
to point two, from point two to point three, etc. The polyline will

54 NeuroCheck Programmer’s Reference

be a closed polyline, if the last point is identical to the first one.
At least two points are required.

PI_SHAPE_POLY_REGION
Closed polyline for which filling is activated. Note that if the
polyline is not closed, an additional line will automatically be
inserted from the first point to the last one. At least four points
are required, the last one identical to the first one.

PI_SHAPE_POLY_SEARCHREG
Polyline with a surrounding area. The size of the surrounding area
is given by the value of element iSearchReg. Note that the
surrounding area must not leave the borders of the applied image.

PI_SHAPE_POLY_SEARCHREG_REGION
Polyline with a surrounding area for which filling is activated.
The size of the surrounding area is given by the value of element
iSearchReg. At least two points are required

PI_SHAPE_CIRCLE Polyline for which circle conversion is activated. Circle if the
polyline is closed, otherwise arc. At least three points are
required.

PI_SHAPE_CIRCLE_REGION
Closed polyline for which both circle conversion and filling is
activated. Note that if the polyline is not closed, an additional line
will automatically be inserted from the first point to the last one.
At least four points are required, the last one identical to the first
one.

PI_SHAPE_CIRCLE_SEARCHREG
Polyline with a surrounding area for which circle conversion is
activated. The size of the surrounding area is given by the value
of element iSearchReg. At least three points are required.

PI_SHAPE_CIRCLE_SEARCHREG_REGION
Polyline with a surrounding area for which circle conversion and
filling is activated. The size of the surrounding area is given by
the value of element iSearchReg. At least three points are
required.

Note that the ordering of the points is crutial for any polyline interpretation. There should be
no crossing of polylines. The created region must not pass the edge of the image section it will
be applied to. An arbitrary object contour can be approximated by a closed polyline by
specifying every single point of the contour.

Data Types and Definitions 55

Example for Creating a Contour
The figure shows a dark octogon on a light background and the corresponding description of a
closed polyline for approximating its contour. The asterisk marks the start of the contour, the
numbers the point numbers, and the arrows the polylines to the next contour point. The top
left corner (X = 0 and Y = 0) has been chosen as reference point.

iShapeType = PI_SHAPE_POLY;

iSearchReg = 0;

Elements of psPoints:

iLength = 8;

piX [1, 2, 3, 4, 4, 3, 2, 1, 1],

piY [2, 1, 1, 2, 3, 4, 4, 3, 2],

3.4 Measurement Array
Measurement arrays are used within NeuroCheck for geometrical measurements created by
function Gauge ROIs. This function is capable of measuring relations between different
regions. Therefore its results cannot be assigned to individual regions and require a new data
structure:

typedef struct
{

unsigned int uiCount;
sPI_MEASVALUE* pasMeasValue;

} sPI_MEASARRAY;

The structure elements have the following meaning:

Element Description

uiCount Number of values in measurement array.

pasMeasValue Array of measurements.

A plug-in check function must not change anything in this structure. All elements are to be
considered „read-only“.

Individual measurements are described by the following structure:
typedef struct
{

unsigned int uiNumber;
float fMeasValue;
LPSTR lpszName;

} sPI_MEASVALUE;

The structure elements designate:

56 NeuroCheck Programmer’s Reference

Element Description

uiNumber Identification number of the measurement.

fMeasValue Measurement value. Can be modified for input objects.

lpszName Description of measurement as a zero-terminated string (this
description is entered by the user).
For input data objects, the contents of this string must not be
changed by a plug-in check function.
Creating a new output data object, the plug-in check function may
assign the address of a static string inside the DLL to the pointer,
just like it is done with the check function name and description
strings. In this case, the maximum length of the string must not
exceed 80 characters. However, for readability we recommend a
maximum length of 40 characters.

3.5 Symbolic Constants

3.5.1 Identification of Data Objects
There are only three symbolic constants in this section representing the possible values of
element iType in the structure sPI_OBJECT describing a region. They allow to distinguish
between objects with and without a complete contour description.

Constant Description

PI_OBJECTAOI Region contains enclosing rectangle only

PI_OBJECTCONTOUR Region also contains contour description.

PI_OBJECTREGION Region also contains contour and region description.

3.5.2 Feature Values
These constants serve to distinguish between the individual feature values possible for a
region. They are intended to be used as indices for the fMeasurement array in the region
description structure sPI_OBJECT and the bMeasurement and
lpszMeasurementName arrays in the region layer structure sPI_LAYER.
The constants are listed here in the same order as the features in the NeuroCheck
documentation which does not necessarily correspond to the order in pi_types.h. To
ensure compatibility to future versions of the plug-in interface programmers should always
use the symbolic names, never the values directly. The features themselves are explained in
detail in the NeuroCheck documentation.

Data Types and Definitions 57

Center of Gravity

Constant Description

PI_ALL_XCOFG X coordinate of the center of gravity of the region.

PI_ALL_YCOFG Y coordinate of the center of gravity of the region.

Enclosing Rectangle

Constant Description

PI_AOI_XORG X coordinate of top left corner of the enclosing rectangle.

PI_AOI_YORG Y coordinate of top left corner of the enclosing rectangle.

PI_AOI_XDIM Width of enclosing rectangle.

PI_AOI_YDIM Height of enclosing rectangle.

PI_AOI_RATIO Ratio of height to width of enclosing rectangle.

Axes

Constant Description

PI_BNDAOI_LAXIS Length of principal axis of the region.

PI_BNDAOI_SAXIS Length of secondary axis of the region.

PI_BNDAOI_LANGLE_180
Direction of principal axis without regard to orientation (i.e.
between 0 and 180°)

PI_BNDAOI_LANGLE_360
Direction of principal axis with regard to orientation (i.e. between
0 and 360°)

Radii
In NeuroCheck a radius is defined as the distance from the center of gravity to a point on the
border of the region.

Constant Description

PI_BNDAOI_RADMEAN Average radius.

PI_BNDAOI_RADMIN Minimum radius.

PI_BNDAOI_RADMAX Maximum radius.

PI_BNDAOI_RANGLE Angle between minimum and maximum radius.

58 NeuroCheck Programmer’s Reference

General Shape Description

Constant Description

PI_ALL_AREA Area of region.

PI_BNDAOI_PERI Circumference of region.

PI_BNDAOI_COMPACT Form factor of region (defined as Area/(4 * π * Circumference²);
maximum value 1 for ideal circles, else smaller).

PI_BNDAOI_FIBRELENGTH
Approximate length of a line following the shape of the region
holding equal distance to both edges.

PI_BNDAOI_FIBREWIDTH
Sum of distances from the fibre to both edges.

PI_BNDAOI_ELONGATION
Ratio of fibre length to width.

Border Contact

Constant Description

PI_AOI_ANY Region touches any image border.

PI_AOI_UP Region touches top border of image.

PI_AOI_DOWN Region touches bottom border of image.

PI_AOI_LEFT Region touches left border of image.

PI_AOI_RIGHT Region touches right border of image.

Number of Enclosed Objects

Constant Description

PI_AOI_HOLES Number of holes enclosed in the region.

Gray Level Statistics

Constant Description

PI_ALL_MEAN Average gray level inside region.

PI_ALL_MIN Minimum gray level inside region.

PI_ALL_MAX Maximum gray level inside region.

PI_ALL_SIGMA Standard deviation of gray levels inside region.

Data Types and Definitions 59

PI_ALL_CONTRAST Maximum difference of gray levels inside region.

Gradient Statistics

Constant Description

PI_ALL_GRADMEAN Average gradient inside region.

PI_ALL_GRADMAX Maximum gradient inside region.

PI_ALL_GRADSIGMA Standard deviation of gray levels inside region.

Curvature Statistics

Constant Description

PI_GEN_CURV_MEAN Average curvature.

PI_GEN_CURV_SIGMA Standard deviation of curvature values.

PI_GEN_CURV_MIN Minimum curvature.

PI_GEN_CURV_MAX Maximum curvature.

PI_GEN_CURV_CONTRAST
Maximum amplitude of curvatures along the contour.

Results of Determine Position

Constant Description

PI_POS_OFFSET_X Offset in X direction calculated by Determine Position.

PI_POS_OFFSET_Y Offset in Y direction calculated by Determine Position.

PI_POS_ROT_ANGLE Rotation angle calculated by Determine Position.

PI_POS_PIVOT_X Pivot X for Determine Position.

PI_POS_PIVOT_Y Pivot Y for Determine Position.

Results of Template Matching

Constant Description

PI_GEN_COR_QUALITY
Quality (correlation coefficient of region with its template).

PI_GEN_COR_SUBPIX_X
X coordinate of region found by subpixel template matching.

PI_GEN_COR_SUBPIX_Y

60 NeuroCheck Programmer’s Reference

Y coordinate of region found by subpixel template matching.

PI_GEN_COR_ANGLE Angle of rotated template.

Results of Classification

Constant Description

PI_GEN_CLASS Number of class determined by classifier (or any other function
which generates class information).

PI_GEN_CLASSQUALITY
Quality of classification result (equals the classification certainty
in case of the classifier, the correlation coefficient in the case of
template matching).

3.5.3 User-Defined Features
Plug-in check functions can compute additional feature values and store them in free positions
of the feature array. For this purpose indizes ranging from 60 to 99 have been reserved (since
a plug-in DLL is typically used for implementing functionality specific to a certain inspection
problem, this range can be used for different purposes in different DLLs so that there should
be no shortage of feature indizes).
For a newly created layer of regions of interest, a custom designation of the feature can be
given which will be used in the NeuroCheck functions working with this feature. This can be
done by assigning a pointer to a static string in the lpszMeasurementName array of the
sPI_LAYER structure.

3.5.4 Target Types
For data output, two target types are supported:

Constant Description

PI_TARGET_FILE Output to data file. lpszTarget contains the full name of the
output file.

PI_TARGET_RS232 Output to RS232 serial interface. lpszTarget contains the
name of the COM port.

4 NeuroCheck API Functionality

The NeuroCheck API (application program interface) provides a way to call certain
functionality of the NeuroCheck main program from the plug-in DLL. For instance, it enables
read and write access to the same digital I/O and field bus devices used in NeuroCheck.
Another main feature offers a convenient and simple way to convert pixel arrays into
Windows® bitmap format which is necessary for displaying images under Windows®.

The NeuroCheck API functionality is encapsulated in a dynamic link library called
Ncapi.dll. If NeuroCheck can locate this DLL in its installation path, on page Plug-In of
the General Software Settings dialog box appears a
check box „Provide API functionality“ and an Info
button for displaying a message box with information
about Ncapi.dll. If the check box is activated, the
NeuroCheck API can be used by any plug-in DLL. For
using the functionality, the plug-in DLL must connect to DLL Ncapi.dll as explained
below.

The usage of the API functionality is demonstrated in the plug-in samples PI_NcApiCalls
and PI_Visualization (see 5.1 Overview of the Sample Plug-In DLLs). There you also
can find a convenient wrapper class implementation for C++. By inserting the files
PI_NcApi.h and PI_NcApi.cpp into your project, you can access all API functions
through methods of the class CNcApi. For some API functions, the class also provides
overloaded methods which simplify their useage with C++.

The functions provided by the API are devided into the following categories:
• Access to hardware devices, i.e. digital I/O and field bus devices.
• Bitmaps management.
• Access to NeuroCheck settings.
• Error Codes.

4.1 Access to Hardware Devices
For access to the hardware configured in NeuroCheck the API provides a number of
functions. The main application will be access to digital I/O and field bus devices.

62 NeuroCheck Programmer’s Reference

GetDeviceCount()
extern "C" WINAPI int GetDeviceCount(int iDeviceType);

The DeviceCount function returns the number of devices of the type specified by
iDeviceType configured in NeuroCheck’s Device Manager. If the input argument is
incorrect, the function returns -1. For instance, the function can be used to retrieve
information about the number of I/O boards configured in NeuroCheck.

Parameters

iDeviceType Type of device. The different device types are identified by
symbolic constants defined in pi_NcApi.h.

GetDeviceName()
extern "C" WINAPI LPSTR GetDeviceName(int iDeviceType, int iDeviceIndex);

The GetDeviceName function returns the name of the specified device as configured in
NeuroCheck’s Device Manager. The string is returned as pointer to a static string. This
pointer is only valid until the next call to this function, so it is recommended to store the string
immediately in a CString variable. It is not possible to change the contents of the string. If one
of the input arguments is incorrect, the function returns a NULL pointer.

Parameters

iDeviceType Type of device. The different device types are identified by
symbolic constants defined in pi_NcApi.h.

iDeviceIndex Index of device.

GetSubDeviceCount()
extern "C" WINAPI int GetSubDeviceCount(

int iDeviceType,
int iDeviceIndex,
int iSubDeviceType);

The GetSubDeviceCount function returns the number of sub devices of the type specified
by iDeviceType, iDeviceIndex and iSubDeviceType configured in NeuroCheck’s
Device Manager. If the input arguments are incorrect, the function returns -1

Parameters

iDeviceType Type of parent device. The different device types are identified
by symbolic constants defined in pi_NcApi.h.

iDeviceIndex Index of parent device.

iSubDeviceType Type of sub device. The different sub device types are identified
by symbolic constants defined in pi_NcApi.h.

NeuroCheck API Functionality 63

GetSubDeviceName()
extern "C" WINAPI LPSTR GetSubDeviceName(

int iDeviceType,
int iDeviceIndex,
int iSubDeviceType,
int iSubDeviceIndex);

The GetSubDeviceName function returns the name of the specified sub device as
configured in NeuroCheck’s Device Manager. The string is returned as pointer to a static
string. This pointer is only valid until the next call to this function, so it is recommended to
store the string immediately in a CString variable. It is not possible to change the contents of
the string. If one of the input arguments is incorrect, the function returns a NULL pointer.
For instance, the function can be used to read the user-defined names of the digital input bits.

Parameters

iDeviceType Type of parent device. The different device types are identified
by symbolic constants defined in pi_NcApi.h.

iDeviceIndex Index of parent device.

iSubDeviceType Type of sub device. The different sub device types are identified
by symbolic constants defined in pi_NcApi.h.

iSubDeviceIndex Index of sub device.

ReadDigitalInput()
extern "C" WINAPI BOOL ReadDigitalInput(int iBoardIndex, int iInputNumber);

The ReadDigitalInput function reads the current state of a digital input. It takes two
arguments which specify the digital I/O board and the input to be read. The function returns
the state of the input, i.e. TRUE or FALSE.

Parameters

iBoardIndex Index of digital I/O board.

iInputNumber Number of input to be read.

SetDigitalOutput()
extern "C" WINAPI BOOL SetDigitalOutput(

int iBoardIndex,
int iOutputNumber,
BOOL bNewState);

The SetDigitalOutput function sets the state of a digital output. It takes three arguments
specifying the digital I/O board, the output to be set, and the state the output will be set to.
The function returns TRUE if the output could be set, or FALSE if an error occurred.

Parameters

iBoardIndex Index of digital I/O board.

64 NeuroCheck Programmer’s Reference

iOutputNumber Number of output to be set.

bNewState New state value.

ReadDigitalInputWord()
extern "C" WINAPI BOOL ReadDigitalInputWord(

int iBoardIndex,
int * pInputWord);

The ReadDigitalInputWord function reads the current states of all 16 digital inputs of
one digital I/O board. It takes two arguments, one which specifies the digital I/O board to be
read and one to return an integer value encoding the states of the inputs. The function returns
TRUE if the input word could be read, or FALSE if an error occurred.

Parameters

iBoardIndex Index of digital I/O board.

pInputWord Pointer to integer value, used to return decimal value of binary
number encoding the state of 16 inputs.

ReadDigitalOutputWord()
extern "C" WINAPI BOOL ReadDigitalOutputWord(

int iBoardIndex,
int * pOutputWord);

The ReadDigitalOutputWord function reads the current states of all 16 digital outputs
of one digital I/O board. It takes two arguments, one which specifies the digital I/O board to
be read and one to return an integer value encoding the states of the outputs. The function
returns TRUE if the output word could be read, or FALSE if an error occurred.

Parameters

iBoardIndex Index of digital I/O board.

pOutputWord Pointer to integer value, used to return decimal value of binary
number encoding the state of 16 outputs.

NeuroCheck API Functionality 65

SetDigitalOutputWord()
extern "C" WINAPI BOOL SetDigitalOutputWord(

int iBoardIndex,
int iOutputWord);

The SetDigitalOutputWord function sets all 16 digital outputs of a digital I/O board at
once. It takes two arguments, the first one specifying the digital I/O board, the second one
holding the values of the bits. The function returns TRUE if the outputs could be set, or
FALSE if an error occurred.

Parameters

iBoardIndex Index of digital I/O board.

iOutputWord State values to be set.

ReadFieldBusInputBit()
extern "C" WINAPI BOOL ReadFieldBusInputBit(

int iBoardIndex,
int iInputNumber);

The ReadFieldBusInputBit function reads the current state of an input bit of a field bus
device. It takes two arguments which specify the field bus board and the input bit to be read.
The function returns the state of the input bit, i.e. TRUE or FALSE.

Parameters

iBoardIndex Index of field bus board.

iInputNumber Number of input bit to be read.

SetFieldBusOutputBit()
extern "C" WINAPI BOOL SetFieldBusOutputBit(

int iBoardIndex,
int iOutputNumber,
BOOL bNewState);

The SetFieldBusOutputBit function sets an output bit of a field bus device. It takes
three arguments, specifying the field bus board, the output bit to be set and the state the output
bit will be set to. The function returns TRUE if the output bit was set successfully, or FALSE
if an error occurred.

Parameters

iBoardIndex Index of field bus board.

iOutputNumber Number of output bit to be set.

bNewState New state value.

ReadFieldBusInputImage()
extern "C" WINAPI BOOL ReadFieldBusInputImage(

66 NeuroCheck Programmer’s Reference

int iBoardIndex,
int iByteCount,
BYTE * pbyInputImage);

The ReadFieldBusInputImage function reads the current input image (input state) of a
field bus device. It takes three arguments, the first one specifiying the field bus board, the
second one the number of bytes (1 byte = 8 bits) to be read, the third one a pointer to a byte
array to be filled with the current input bytes. The function returns TRUE if the input image
could be read, or FALSE if an error occurred.

Parameters

iBoardIndex Index of field bus board.

iByteCount Number of bytes to be read = length of input image buffer.

pbyInputImage Pointer to input image data (length of buffer = iByteCount).

ReadFieldBusOutputImage()
extern "C" WINAPI BOOL ReadFieldBusOutputImage(

int iBoardIndex,
int iByteCount,
BYTE * pbyOutputImage);

The ReadFieldBusOutputImage function reads the current output image (output state)
of a field bus device. It takes three arguments, the first one specifiying the field bus board, the
second one the number of bytes (1 byte = 8 bits) to be read, the third one a pointer to a byte
array to be filled with the current output bytes. The function returns TRUE if the output image
could be read, or FALSE if an error occurred.

Parameters

iBoardIndex Index of field bus board.

iByteCount Number of bytes to be read = length of output image buffer.

pbyOutputImage Pointer to output image data (length of buffer = iByteCount).

NeuroCheck API Functionality 67

SetFieldBusOutputImage()
extern "C" WINAPI BOOL SetFieldBusOutputImage(

int iBoardIndex,
int iByteCount,
BYTE * pbyOutputImage);

The SetFieldBusOutputImage function sets a new output image (output state) of a
field bus device. It takes three arguments, the first one specifiying the field bus board, the
second one the number of bytes (1 byte = 8 bits) to be set, the third one a pointer to a byte
array filled with the new values of the output bytes. The function returns TRUE if the output
image could be set, or FALSE if an error occurred.

Parameters

iBoardIndex Index of field bus board.

iByteCount Number of bytes to be set = length of output image buffer.

pbyOutputImage Pointer to new output image data (length of buffer =
iByteCount).

4.2 Bitmap Management
Bitmap formats are essential for displaying images in Windows® applications. In order to free
the plug-in DLL programmer from implementing these formats himself, the API provides
several functions which allow convenient management of bitmaps. A bitmap is passed as
bitmap handle which basically can be seen as pointer to a bitmap object. The bitmap objects
created by the NeuroCheck API are kept within the API DLL. The API also provides
functions to retrieve certain information about the existing bitmap objects. In order to release
bitmap objects not used any longer, the respective API functions must be used. In any case all
objects are released upon unloading Ncapi.dll.
For convenient management of bitmaps the API provides the following functions.

CreateMonoBitmap()
extern "C" WINAPI HBITMAP CreateMonoBitmap(

int iWidth,
int iHeight,
int iZoom,
BYTE * pbyGrayValues,
BOOL bOverlayColors);

The CreateMonoBitmap function can be used to create a 256 color bitmap. It takes five
arguments, two specifying the dimensions of the image, one specifying the scale factor, one
containing the pixel values of the gray level image, and one to enable the drawing of overlays.
The function returns a handle to the created bitmap, or NULL on error.

Parameters

iWidth Width of image.

68 NeuroCheck Programmer’s Reference

iHeight Height of image.

iZoom Scale factor. Can have one of the following values, declared as
symbolic constants in pi_types.h:
NC_ZOOM_10 10 % of original image size.
NC_ZOOM_25 25 % of original image size.
NC_ZOOM_50 50 % of original image size.
NC_ZOOM_100 100 % of original image size.
NC_ZOOM_200 200 % of original image size.

pbyGrayValues Pointer to image data.

bOverlayColors If TRUE, values in the color palette are reserved for overlay
colors. This is necessary for drawing on the image using the
graphics device interface (GDI) of Windows®. Please refer to
sample DLL for an example.

CreateColorBitmap()
extern "C" WINAPI HBITMAP CreateColorBitmap(

int iWidth,
int iHeight,
int iZoom,
BYTE * pbyRedData,
BYTE * pbyGreenData,
BYTE * pbyBlueData);

The CreateColorBitmap function can be used to create a TrueColor bitmap. It takes six
arguments, two specifying the dimensions of the image, one specifiying the scale factor, three
containing the pixel values of each color channel. The function returns a handle to the created
bitmap, or NULL on error.

Parameters

iWidth Width of image.

iHeight Height of image.

iZoom Scale factor. Can have one of the following values, declared as
symbolic constants in pi_types.h:
NC_ZOOM_10 10 % of original image size.
NC_ZOOM_25 25 % of original image size.
NC_ZOOM_50 50 % of original image size.
NC_ZOOM_100 100 % of original image size.
NC_ZOOM_200 200 % of original image size.

pbyRedData Pointer to image data (red channel).

pbyGreenData Pointer to image data (green channel).

pbyBlueData Pointer to image data (blue channel).

NeuroCheck API Functionality 69

DeleteBitmap()
extern "C" WINAPI BOOL DeleteBitmap(HBITMAP hBmp);

The DeleteBitmap function deletes the bitmap of the given handle. The function returns
TRUE on success, FALSE on error.

Parameters

hBmp Handle of bitmap to be deleted.

DeleteAllBitmaps()
extern "C" WINAPI void DeleteAllBitmaps(void);

The DeleteAllBitmaps function deletes all bitmap handles currently kept in the
Ncapi.dll. The function has no parameters and no return value.

GetBitmapWidth()
extern "C" WINAPI int GetBitmapWidth(HBITMAP hBmp);

The GetBitmapWidth function reads the width of the given bitmap.
The function returns -1 on error.

Parameters

hBmp Handle of bitmap.

GetBitmapHeight()
extern "C" WINAPI int GetBitmapHeight(HBITMAP hBmp);

The GetBitmapHeight function reads the height of the given image.
The function returns -1 on error.

Parameters

hBmp Handle of bitmap.

GetBitmapNumColors()
extern "C" WINAPI int GetBitmapNumColors(HBITMAP hBmp);

The GetBitmapNumColors function returns the number of colors in color palette of
bitmap. The function returns -1 on error.

Parameters

hBmp Handle of bitmap.

Return Values

0 TrueColor bitmap

256 256 color bitmap

70 NeuroCheck Programmer’s Reference

-1 Error.

LoadBitmapFromFile()
extern "C" WINAPI HBITMAP LoadBitmapFromFile(LPCTSTR lpszFilename);

The LoadBitmapFromFile function loads a specified bitmap file. The function returns
the handle of the loaded bitmap on success, or NULL on error.

Parameters

lpszFilename Name of bitmap file to be loaded.

SaveBitmapToFile()
extern "C" WINAPI BOOL SaveBitmapToFile(

HBITMAP hBmp,
LPCTSTR lpszFilename);

The SaveBitmapToFile function saves the given bitmap to file. The function returns
TRUE on success, FALSE on error.

Parameters

hBmp Handle of bitmap to be saved.

lpszFilename Name of bitmap file.

GetAdvMemPtr()
extern "C" WINAPI BYTE* GetAdvMemPtr(unsigned int uiSize);

The GetAdvMemPtr function serves for passing large images faster to NeuroCheck. It
reserves memory space of size uiSize for the image pointers in the sPI_IMAGE structure,
i.e. for the struct members pbyGrayValue, pbyRedValue, pbyGreenValue and
pbyBlueValue. The function returns the pointer address for the reserved memory block.
This address is read-only and must be assigned to one of the aforementioned members of
structure sPI_IMAGE. NeuroCheck then will use the pointer directly instead of copying the
image data when using VirtualAlloc for allocation. Note that the structure of type
sPI_IMAGE itself still must be allocated using VirtualAlloc. The function returns
NULL on error.

Parameters

uiSize Size of memory block to be reserved.

NeuroCheck API Functionality 71

ReleaseAdvMemPtr()
extern "C" WINAPI BOOL ReleaseAdvMemPtr(BYTE* pbyData);

The ReleaseAdvMemPtr function releases memory space allocated with the
GetAdvMemPtr function. The function returns TRUE on success, FALSE on error.

Parameters

pbyData Address of memory block previously reserved with
GetAdvMemPtr.

4.3 Access to NeuroCheck Settings
The API enables the plug-in DLL to access certain settings of NeuroCheck. For this purpose
the API provides the following functions:

GetNcApiVersion()
extern "C" WINAPI int GetNcApiVersion(void);

The GetNcApiVersion function returns the version number of the NeuroCheck API as
integer, e.g. 515. It will be increased whenever functionality is added to the DLL.

GetNcExeVersion()
extern "C" WINAPI BOOL GetNcExeVersion(

DWORD * pdwMajorVersion,
DWORD * pdwMinorVersion,
DWORD * pdwBuildVersion,
DWORD * pdwSubBuildVersion);

The GetNcExeVersion function reads the version numbers of the NeuroCheck main
application. The version information, e.g. 5.1.1038.0, will be splitted into single parts that are
returned by the argument pointers. The function returns TRUE on success, FALSE on error.

Parameters

pdwMajorVersion Will be filled with major verson number, e.g. 5.

pdwMinorVersion Will be filled with minor verson number, e.g. 1.

pdwBuildVersion Will be filled with main build number, e.g. 1038.

pdwSubBuildVersion Will be filled with sub build number, e.g. 0.

GetSecurityKeyItem()
extern "C" WINAPI int GetSecurityKeyItem(int iItemIndex);

The GetSecurityKeyItem function returns information about the security key of
NeuroCheck. On error, the function returns –1.

72 NeuroCheck Programmer’s Reference

Parameters

iItemIndex Index of security key item. Can have one of the following values,
declared as symbolic constants in pi_NcApi.h:
NC_KEY_LICENSE_NUMBER return license number.
NC_KEY_LICENSE_LEVEL return license level

As license level the function returns the same values as for the LicenseLevel property in the
OLE automation interface (see 7.3.1 Properties of NCApplication Object).

GetCrCommId()
extern "C" WINAPI int GetCrCommId(void);

The GetCrCommId function returns the value of the check routine identification number
(CRID) of the currently loaded check routine. If no check routine is loaded or upon error the
function returns -1.

GetAppIoIgnoreFlag()
extern "C" WINAPI BOOL GetAppIoIgnoreFlag(void);

The GetAppIoIgnoreFlag function returns the value of the ignore cummunication option
of NeuroCheck. If it returns TRUE, NeuroCheck currently ignores all functions requiring
signals to be received via digital I/O or field bus; The default is FALSE.

SetCheckRoutineModifiedFlag()
extern "C" WINAPI void SetCheckRoutineModifiedFlag(BOOL bState);

The SetCheckRoutineModifiedFlag function modifies the "Dirty" flag of the current
check routine. If this flag is TRUE, then upon closing the check routine NeuroCheck will
display a message box asking if the user wants to save the check routine or not. The flag
generally is set to TRUE in NeuroCheck if the check routine has been altered.

Parameters

bState New state of "Dirty" flag.

NeuroCheck API Functionality 73

GetParentOID()
extern "C" WINAPI int GetParentOID(int iOID);

The GetParentOID function returns the object identification number (OID) of the parent
object for the object specified by the OID number. For a check function, the parent object is
the single check it belongs to, for a single check the check routine. If there is no object with
the specified OID, or if this object is the check routine and thus has no parent, then the
function returns -1.

Parameters

iOID Identification number of NeuroCheck object to be investigated.

GetXMLStringLength()
extern "C" WINAPI int GetXMLStringLength(int iOID, int iExportOptions);

The GetXMLStringLength function returns the length of the XML export string for the
NeuroCheck object specified by its object identification number (OID), including the zero
termination character. So the return value can be used immediately to allocate the string buffer
for GetXMLString. If there is no object with the specified OID, or if the XML export fails,
then the function returns -1.

Parameters

iOID Identification number of NeuroCheck object to be investigated.

iExportOptions Export options. See GetXMLString.

GetXMLString()
extern "C" WINAPI BOOL GetXMLString(

int iOID,
char* pszXMLString,
unsigned int uiMaxStringLength,
int iExportOptions);

The GetXMLString function returns the XML export string for the NeuroCheck object
specified by its object identification number (OID). The string will be copied to the string
buffer which must be allocated prior to calling this function. The exact buffer size can be
determined with GetXMLStringLength. If the buffer is not large enough, the XML string
will simply be truncated. The function returns TRUE on success, FALSE on error.

Parameters

iOID Identification number of NeuroCheck object to be investigated.

pszXMLString Pointer to previously allocated string buffer.

uiMaxStringLength Maximum length of string that can be copied to string buffer.

iExportOptions Export options. Can be any combination of the following values,
declared as symbolic constants in pi_NcApi.h:

74 NeuroCheck Programmer’s Reference

NC_XML_EXPORT_
CHILDREN main XML child elements
PROPERTIES all other XML child elements
BINARY binary data elements
DESCRIPTION description elements (HTML)
ATTRIBUTES supplementary attributes

The export options can be used to optimize execution speed. If only the parameters of a check
function are needed including binary data (e.g. parameter block of plug-in functions), then
iExportOptions could be set to
NC_XML_EXPORT_CHILDREN + NC_XML_EXPORT_BINARY

LogMessage()
extern "C" WINAPI BOOL LogMessage(

int iWarningLevel,
LPCTSTR lpszSource,
LPCTSTR lpszMsg);

The LogMessage function writes a message to the NeuroCheck log file. It can be used to
easily output status or warning messages within the context of standard NeuroCheck messages
and thus is very convenient for debugging a plug-in DLL. The message will only be written if
logging is activated in NeuroCheck. The function returns TRUE on success, FALSE on error
or if no logging is activated.

Parameters

iWarningLevel Warning level, 1-4 from fatal error to simple information.
Symbolic constants for the levels are declared in PI_NcApi.h.

lpszSource Name of source, e.g. name of plug-in DLL of function.

lpszMsg Message to be written.

4.4 Error Codes
The API provides following function to retrieve the most recent error that occured for a
function call to NeuroCheck API.

GetLastNcApiError()
extern "C" WINAPI int GetLastNcApiError(void);

The GetLastNcApiError function returns a value indicating the most recent error that
occured for a function call to NeuroCheck API. A call to GetLastNcApiError resets the
internal error state to -1.

Return Value Meaning

-1 No error.

100 No access to NeuroCheck application window.

NeuroCheck API Functionality 75

101 Invalid parameter.

102 Invalid buffer size.

110 Error for API function GetDeviceCount.

111 Error for API function GetSubDeviceCount.

120 Error reading digital input.

121 Error setting a digital output.

130 Error setting output word for digital IO board.

131 Error reading input word for digital IO board.

132 Error reading output word for digital IO board.

140 Error reading digital input bit for field bus board.

141 Error setting a digital output bit for field bus board.

150 Error setting output image for field bus board.

151 Error reading input image for field bus board.

152 Error reading output image for field bus board.

160 Error setting modified flag for check routine.

161 Error reading ignore communication option of application.

162 Error allocating advanced memory pointer.

163 Error releasing advanced memory pointer.

165 Error or wrong argument in GetSecurityKeyItem.

170 Error creating bitmap.

171 Invalid bitmap handle.

172 Error loading bitmap from file.

173 Error creating bitmap file.

174 Error writing bitmap to file.

175 Invalid bitmap format.

180 Could not get version info of NeuroCheck executable.

181 Could not get object ID.

182 Error writing log file entry.

183 Error for API function GetDeviceName.

76 NeuroCheck Programmer’s Reference

184 Error for API function GetSubDeviceName.

185 Error getting XML string.

186 Error getting XML string length.

187 Object identifier not found.

188 Check routine object has no parent.

189 Logging disabled.

5 Implementing a Plug-In DLL

The implementation of a plug-in DLL is demonstrated by several sample plug-in DLLs. The
sample DLLs have been programmed using Microsoft® Visual C++ 6.0, but you can of course
use any language and / or compiler which supports DLL compilation for implementing a plug-
in DLL. Each project is contained in an own folder.

5.1 Overview of the Sample Plug-In DLLs
The samples can be installed or copied from the NeuroCheck CD-ROM. If installed from CD-
ROM, the sample projects can be found in the folder \Programming\PlugIn in the
NeuroCheck installation path.

PI_Simple
This is a very basic sample. The sample DLL only contains one plug-in check function. The
sample also shows how to display an info dialog for a plug-in DLL.
• Modify Image

The plug-in check function simply takes an input image and modifies its gray level pixel
values. It has no parameters, no custom visualization and no data output capabilities.

PI_Menu
This sample demonstrates the use and implementation of plug-in menu commands. It
implements three plug-in menu commands to be called in manual mode and three others to be
called in automatic mode. The plug-in menu commands are appended to the Tools menu in
NeuroCheck for the respective mode. The sample DLL does not register any plug-in check
function.

PI_Parameter
This sample shows the usage of a parameter set and the implementation of a parameter dialog
for a plug-in check function. It also shows the usage of help files for plug-in check functions.
For this and all following samples, each plug-in check function is encapsulated in its own
source file.

• Create New Image
This plug-in check function demonstrates the use of parameters in a plug-in check
function and the implementation of a simple parameter dialog. It also demonstrates the
creation of a new data object.
The plug-in check function takes an input image and creates an output image which is the
mirror of the input image. If the parameter flag is TRUE, the output image additionally
will be inverted.

• Modify Histogram
This plug-in check function demonstrates the implementation of a parameter dialog which

78 NeuroCheck Programmer’s Reference

accesses input data of the function. An Update button can be used to dynamically update
the input data for a new image.
The plug-in check function takes a histogram as input object and modifies the threshold
value.

• Modify Color Image
This plug-in check function demonstrates the use of a structure as parameter block. It
gives detailed hints for the setting of default values and version management in the
initialization routine.
The plug-in check function takes a color image as input object and inverts one of its color
channel according to the option chosen in its parameter dialog. It aborts execution if the
input image has no color information. In manual mode, in this case a message box is
displayed to inform the user.

PI_DataTypes
This sample shows how to access, modify and create output objects of different NeuroCheck
data types. Please refer also to the functions of PI_Parameter (e.g. Modify Histogram).
Examples for more complicated operations and for the usage of plug-in data types are given in
PI_DataTypes_Adv.

• Create Histogram
This plug-in check function demonstrates the creation of a PI_HISTO data type object.
It also shows the access of image and layer data. Another example for creating a
histogram can be found in PI_DataOutput.

• Modify Layer
This plug-in check function demonstrates the modification of an object layer. In detail
following modifications are shown:

• ordering of objects (modification of object number)
• grouping of objects (modification of group number)
• activating and calculating feature values (fMeasurement array)
• altering position of objects
• declaration of invalid objects (bValid flag)

• Create MeasArray
This plug-in check function demonstrates the creation of a PI_MEASARRAY data type
object. It also shows the read access of the feature values of a layer object. For each
activated feature, the sum is calculated for all objects in the input layer.
Another example for creating a meas array can be found in PI_DataOutput.

• Modify MeasArray
This plug-in check function demonstrates the modification of a measurement array. Each
measurement value is replaced by its square value.

Implementing a Plug-In-DLL 79

PI_DataTypes_Adv
This sample demonstrates the use of plug-in data types. It also gives advanced examples for
the use of NeuroCheck data types. Less complex examples are given in PI_DataTypes and
PI_DataOutput.

• Create Plug-In Data Types
This plug-in check function demonstrates the creation of plug-in data types. Furthermore
it shows the access of class information of objects and of source information of images.

• Modify Plug-In Data Type
This plug-in check function demonstrates the modification of a plug-in data type. The
plug-in check function takes as input an object of plug-in data type DT_03. It simply
changes the CString object encapsulated in the plug-in data type.

• Create Color Image
This plug-in check function demonstrates the creation of a color image. It also shows the
read access of ROI descripitions, i.e. chain code for the contour and RLC code for the
region description.
A simpler example for creating a PI_IMAGE object can be found in PI_DataOutput.

• Create Layer
This plug-in check function demonstrates the creation of layer objects and the access of
model geometries. Objects in the input layer for which no model geometry has been
calculated for simply will be copied to equivalent objects in the output layer if possible.
For objects a model geometry has been calculated for an output object will be created
matching the model geometry.
A simpler example for creating a PI_LAYER object can be found in PI_DataOutput.

PI_DataOutput
This sample DLL shows how plug-in check functions can participate in NeuroCheck's file
output capabilities

• Output of Color Image
This plug-in check function demonstrates output of an image. It also gives a simple
example for the creation of a color image.

• Output of Plug-In Data Types
This plug-in check function demonstrates the creation and data output of plug-in data
types.

• Output of MeasArray
This plug-in check function demonstrates the creation and data output of a
PI_MEASARRAY data type object.

80 NeuroCheck Programmer’s Reference

• Output of Layer
This plug-in check function demonstrates the creation and data output of a layer object. It
creates one rectengular AOI and activates some feature values.

• Output of Histogram
This plug-in check function demonstrates the creation and data output of a PI_HISTO
data type object.

PI_NcApiCalls
This sample shows the usage of the NeuroCheck API functionality provided in NcApi.DLL.
A further example is shown in PI_Visualization. For this sample, the NeuroCheck API
is encapsulated in a C++ class available for re-use.
Please note that for successful execution of this sample, the check box „Provide API
functionality“ on page Plug-In of the General Software Settings dialog box must be activated.

• Read Digital Input Word
This plug-in check function demonstrates the reading of an input word from a digital I/O
board.

• Set Digital Output Word
This plug-in check function demonstrates the setting of an output word for a digital I/O
board.

• Save Bitmap
This plug-in check function demonstrates the creation of a bitmap object and the saving
of the bitmap to file using the NcApi functionality. For extended examples on creating
bitmaps please refer to PI_Visualize.

• Update Counter
This plug-in check function creates a meas array with a single measurement containing
the value of the current count value. It demonstrates the setting of the modified flag of the
current check routine.
The function has a parameter set which is updated for each execution of the plug-in check
function. In order to save the parameter block upon closing NeuroCheck or for a type
change, the modified flag is set to TRUE.

• Modify Field Bus Output Image
This plug-in check function demonstrates the access of a field bus device using the NcApi
functionality. It shifts the bytes of the output image.

• Create Fast Color Image
This plug-in check function demonstrates the creation of an image using the NcApi
function GetAdvMemPtr().

Implementing a Plug-In-DLL 81

PI_Visualization
This sample demonstrates the usage of custom result views. It also shows further examples for
using the NeuroCheck API functionality. The NeuroCheck API is encapsulated in a C++ class
available for re-use.
Please note that for successful execution of this sample, the check box „Provide API
functionality“ on page Plug-In of the General Software Settings dialog box must be activated.

• Visualize Images
The plug-in check function creates a color image and displays each color channel in a
own result view. It also displays the input image as gray level image. The function also
demonstrates the usage of the NeuroCheck API functionality to create bitmaps.

5.2 Project Structure
A plug-in DLL for NeuroCheck is created within a standard Visual C++ project for DLL
programming. It will usually be unnecessary to make any changes to the core project files,
excepting dialog and menu ressources. Therefore we recommend to reuse the files from one of
the sample projects meeting your requirements. First create a new project of type MFC
AppWizard(dll) using the Microsoft Foundation Classes as a static library. The
AppWizard will automatically create several files, whose contents should then be replaced by
that of the corresponding files from a sample project.
The file names are derived from the project name. For the example project called PI_xxx
these are the following files:

File Description

PI_xxx.def Definition file, exports the required administrative functions. Do
not change unless additional administration functions are
required.

PI_xxx.cpp Initialization routines, do not change.

PI_xxx.h Header file, do not change.

PI_xxx.rc Ressource file, contains the mandatory info dialog, which can be
adapted to the desired look-and-feel or your plug-in DLL.
Parameter dialogs of individual functions can be defined here as
well.

PI_Types.h Header file with data types and constants of the NeuroCheck
plug-in interface. Do not change.

PI_Main.cpp Administrative functions. This is the base implementation file to
be adapted. We recommend to modularize your project such that
each plug-in check function is encapsulated in a single module,
i.e. header and implementation file. All samples with the
exception of the PI_Simple project demonstrate this principle.

82 NeuroCheck Programmer’s Reference

The next two files are only part of projects PI_NcApiCalls and PI_Visualization.

PI_NcApi.h Header file with wrapper class definition, data types and
constants for the NeuroCheck API interface. Do not change.

PI_NcApi.cpp Implementation of wrapper class for conventient usage of the
NeuroCheck API interface. Do not change.

NOTE: Do not use the MFC as a DLL, as this would conflict with NeuroCheck and cause the
DLL loading process to fail. Instead it is recommended to statically link the MFC. This has
the additional advantage that it is not necessary to check the version for the installed MFC
DLL when using the plug-in DLL on a different system.

6 Custom Communication Interface

NeuroCheck allows you to seamlessly integrate your own communication interface DLL. It
will work exactly as the serial interface DLL included with the setup.

Implementation Considerations
The function declarations described in the following refer to Microsoft® 32 bit C/C++
compilers. When using a different compiler take care to use compatible data types and
parameter passing methods. Furthermore it has to be ensured that the DLL exports all function
names explicitly.
A Visual C++® sample project can be installed or copied from the NeuroCheck CD-ROM. If
installed from CD-ROM, you will find it in the folder \Programming\CustComm in the
NeuroCheck installation path. Please note that it is more a template to base your own
implementation on than a ready-to-use example.

6.1 Using a Custom Communication Interface

6.1.1 Loading a Custom Communication DLL
Like all device drivers in NeuroCheck a custom communication DLL is loaded using the
Hardware Wizard invoked by choosing New in the Device Manager dialog. On the first page
of the Hardware Wizard select Other communication devices and choose Next.

Figure 9: first page of hardware wizard for custom communication

84 NeuroCheck Programmer’s Reference

On the next page you have to enter the full path name of the device driver DLL (or select it
via the Browse button). Then you have to enter a descriptive string. This string is used in the
Device Manager to designate the interface and is mandatory. Note that only a single custom
communication DLL can be loaded at any time.

Figure 10: second page of hardware wizard for custom communication

The final page of the Hardware Wizard merely informs you about the settings you have made
on the previous pages. Choosing Finish loads and tests the device driver DLL.

6.1.2 Transmitting Data via the Custom Communication Interface
In order to transmit data via the custom communication interface it has to be activated
globally by checking the Destination: custom comm. device box on the Output page of the
check routine window.

Custom Communication Interface 85

Figure 11: global activation of custom communication on output tab page

Alternatively you can choose Data Output Custom Communication... from the Check
Routine menu and activate the Generate custom communication output check box in the
Custom Communication Output Settings dialog box.

Figure 12: global activation of custom communication via menu command

This dialog is also invoked by choosing Change Settings from the context menu of the
Destination: custom comm. device box on the Output page of the check routine window.
Choosing the Options button in this dialog invokes the Options for Custom Communication
dialog, where you can activate several administrative information items to be included in the
transmission. This dialog equals the one for serial communication in NeuroCheck.
NeuroCheck treats the custom communication interface as a serial device, because this is the
most universal output device, as it can be used for remote control as well as for data output.

86 NeuroCheck Programmer’s Reference

Figure 13: custom communication options

For details on these options refer to the online help system of NeuroCheck.

6.1.3 Using the Custom Communication Interface for Remote-Control
Like the standard serial interface protocol the custom communication interface can be used for
remote-control of NeuroCheck in automatic mode.

Start Check
In order to initiate a check routine run by a signal from the custom communication interface
choose Remote Control from the System menu, switch to the Input page, activate the Start
check signal, choose Change and select the Custom communication interface indicated by the
antenna icon from the Select Signal Source dialog box. NeuroCheck will then poll the custom
communication interface using function TestStart() while it waits for a start signal.

Select Check Routine
In order to switch check routines automatically by a signal from the custom communication
interface choose Remote Control from the System menu, switch to the Input page, activate
the Select check routine signal, choose Change and select the Custom communication
interface indicated by the antenna icon from the Select Signal Source dialog box. NeuroCheck
will then poll the custom communication interface using function GetTypeId() while it
waits for a check routine selection signal.

Transmit Check Result
In order to have the final result of a check routine run automatically transmitted via the
custom communication interface choose Remote Control from the System menu, switch to
the Output page, activate the Check result signal, choose Change and select the Custom

Custom Communication Interface 87

communication interface indicated by the antenna icon from the Select Signal Destination
dialog box. NeuroCheck will then invoke function SetCheckResult() as soon as a check
routine run has been completed.

6.2 Administrative Functions

6.2.1 Driver Initialization
Upon loading the driver (from the Hardware Wizard or during program start-up) NeuroCheck
calls an initialization function. The programmer of the communication DLL can use this
initialization function to check for the presence of the required communication hardware,
open communication channels etc. The function is declared as:

extern "C" BOOL DllInit (void)

It has to return 1 for a successful initialization, 0 else. The function must be exported
explicitly from the DLL.

6.2.2 Driver Setup
The DLL can contain and export a function declared as follows:

extern "C" BOOL SetupDevice (HWND hwndAppMain)

If this function exists and the user chooses "Properties" in the Device Manager while the
custom communication interface is selected, NeuroCheck will call this function. It receives a
handle to the main application window so that the programmer of the communication DLL
can display his own dialog for setting up the device, analogous to the setup dialog of the serial
interface DLL included with NeuroCheck.
The return value of the function indicates the return status of the setup dialog. If the function
returns TRUE, NeuroCheck will call function DllInit() again.
If the function does not exist, NeuroCheck will not react to the "Properties" button for a
custom communication interface.

6.2.3 Driver Test
The DLL can contain and export a function declared as follows:

extern "C" BOOL TestDevice (HWND hwndAppMain)

If this function exists and the user chooses "Test" in the Device Manager while the custom
communication interface is selected, NeuroCheck will call this function. It receives a handle
to the main application window so that the programmer of the communication DLL can
display his own dialog for testing the device, analogous to the test dialog of the serial interface
DLL included with NeuroCheck. If the function does not exist, NeuroCheck will not react to
the "Test" button for a custom communication interface (the same holds for the Test Custom
Communication item from the System menu)
The function should return TRUE if the device is working properly, FALSE else.

88 NeuroCheck Programmer’s Reference

6.3 Remote Control Functions

6.3.1 Test for Start Signal
When NeuroCheck is in automatic mode and no check routine is running it polls the device
selected for the Start check signal in the Remote Control dialog periodically. If this device is a
custom communication interface it will call a function declared as follows:

extern "C" BOOL TestStart (void)

As long as this function returns 0 NeuroCheck continues polling. Upon a return value of 1
NeuroCheck will start the check routine (or wait for a check routine selection signal; see
below). The function must be exported explicitly from the DLL.
NOTE: this function can be used to start a check a predefined number of times automatically
by using an internal counter to decide, whether to return 1 or 0.

6.3.2 Retrieve Check Routine Selection Signal
When NeuroCheck has received a Start check signal in automatic mode and the Check routine
selection signal is activated in the Remote Control dialog it will poll the device selected for
this signal periodically. If this device is a custom communication interface it will call a
function declared as follows:

extern "C" BOOL GetTypeId (unsigned short int * pTypeId)

As long as this function returns 0 NeuroCheck continues polling. Upon a return value of 1
NeuroCheck will try to load the check routine with the identification number returned in
*pTypeID. The function must be exported explicitly from the DLL.
The valid range for check routine identification numbers is 0 to 99999, i.e. every positive
integer that can be represented by five digits.

6.4 Result Output Functions

6.4.1 Final Check Result
After completing a check routine run NeuroCheck will send the final result of the check (OK
or not OK) to the device selected for the Check result signal in the Remote Control dialog
box. If this device is a custom communication interface (or if the option to include the check
result in the transmission frame has been activated in the Options for Custom Communication
dialog) it will call a function declared as:

extern "C" void SetCheckResult (BOOL bSuccess)

If the check result is OK, a value of 1 will be passed in bSuccess, a value of 0 else. The
function must be explicitly exported from the DLL.

6.4.2 Floating Point Value
Functions like Measure ROIs or Gauge ROIs compute floating point values. If a custom
communication interface has been selected as destination device for the results of such a

Custom Communication Interface 89

function, NeuroCheck will call a function TransferFloat() for every value to be
transmitted. The function is declared as:

extern "C" void TransferFloat (float fValue)

In fValue NeuroCheck passes the floating point value to be transmitted.

6.4.3 Integer Value
Functions like Count ROIs or Determine threshold compute integer values. If a custom
communication interface has been selected as destination device for the results of such a
function, NeuroCheck will call a function TransferInt() for every value to be
transmitted. The function is declared as:

extern "C" void TransferInt (int iValue)

In iValue NeuroCheck passes the integer value to be transmitted.

6.4.4 String
Functions like Classify ROIs or Identify bar code compute string values. If a custom
communication interface has been selected as destination device for the results of such a
function, NeuroCheck will call a function TransferString() for every value to be
transmitted. The function is declared as:

extern "C" void TransferString(char * pChar, unsigned int uiNumOfChars)

In pChar NeuroCheck passes the starting address of the string to be transmitted, in
uiNumOfChars the number of valid characters.

6.4.5 Actuating Transmission
For performance reasons it may be advisable not to perform an actual transmission in the
transfer functions described above but instead to buffer the data passed to these functions
internally in the DLL. To enable programmers to optimize their DLL in such a way
NeuroCheck calls a Flush() function at the end of a check routine run, when any output has
been directed to a custom communication interface. The function is declared as:

extern "C" BOOL Flush (void)

The programmer can then use this function to perform the actual transmission. A return value
of 1 indicates to NeuroCheck that communication has been executed without problems,
whereas a return value of 0 indicates communication failure. If a system log output window
exists on the automatic screen NeuroCheck will report this failure.

7 OLE Automation

This chapter documents the OLE automation interface exposed by NeuroCheck and contains
excerpts from the NeuroCheck example automation controller to illustrate its use. For
additional information on OLE technology please refer to Microsoft® operating system and
development documentation, especially the documentation on "Array Manipulation
Functions" regarding safearrays.

7.1 Introduction

7.1.1 What is OLE?
The original meaning of the acronym OLE is "Object Linking and Embedding" denoting a
technology for exchanging data objects between applications. A typical example can be found
in everyday office work: a chart from a spreadsheet program can be "embedded" in a word
processor document so that a double-click on the chart will automatically activate the
spreadsheet program for editing the chart. Alternatively, the chart can be linked into the
document to allow automatic updating of the chart in the document whenever the original
chart is updated in the spreadsheet program.
The original OLE functionality has later been extended into a general standard for the
exchange of objects between applications. This standard refers to data objects as well as to
programmable objects enabling programs to access the functionality of other programs. These
programmable objects expose certain interfaces to the system allowing other OLE-capable
applications to control the original programmable object. Controlling another application's
programmable objects is called OLE automation. We will come to that in a moment.
First, though, a few remarks on COM and ActiveX, just to avoid confusion about all these
names and acronyms. Details on the various technologies related to OLE can be found in
Microsoft's OLE programmer's reference and a variety of other volumes.
COM stands for Component Object Model. This is the technology upon which OLE is built.
COM specifies a set of rules for the creation of binary objects that can communicate with each
other. By following these rules, programmable objects can be written in any OLE-capable
programming language and accessed by any OLE-capable application. Recently, COM has
been further extended to function between various computers connected over a network and
is consequently now called DCOM, Distributed COM (DCOM). The most recent extension of
COM/OLE bears the name ActiveX. Its most important aspect is the capability to exchange
program functionality through the world-wide Internet. The distribution of programmable
objects over the Internet allows for the integration of application capabilities into the hitherto
rather static textual and graphical information on the World Wide Web.

7.1.2 What is OLE Automation?
Above we introduced the term OLE automation for the technology of controlling another
application's objects. Like OLE, it is build on the COM techology and is therefore also called
ActiveX Automation. In OLE automation there is a clear distinction between two different

92 NeuroCheck Programmer’s Reference

roles of programs:
• The application that supplies the programmable object is called the OLE automation

server.
• The application using the functionality provided by the server is called the OLE

automation client.
In effect, the client controls server. In this sense, the server is the slave, the client the master
which may sound a bit confusing at first.
We have to distinguish further between two types of OLE automation servers:
• In-process-servers in the form of a dynamic link library (DLL); they are called in-process

because the DLL is loaded into the address space of the controlling process.
• Out-of-process-servers, i.e. stand-alone executable files which expose an interface

through which parts of their functionality can be controlled from the outside.
Since NeuroCheck obviously is a stand-alone executable file, it represents an out-of-process-
server, which is why we will focus on this type of servers in the following.
A client must first connect to the server in order to use its functionality. This connection is
established through the Windows® Automation Manager. This in turn queries the system
registry for information about the server. Therefore, NeuroCheck must be started at least once
as an independent executable in order to register itself as an OLE automation server
before you can control it through a client.

NeuroCheck will update the pertaining registry entry whenever it is started, so if you are
running various versions of NeuroCheck on the same PC, the registry entry will always refer
to the version most recently used.

After the connection has been established, the client can access the automation objects of the
server. It may read or set properties or call methods of the objects. The complete
communication is handled by the Automation Manager, i.e. each function call is handled
through the operating system.

Figure 14: OLE Communication for out-of-process servers (stand-alone executables).

OLE Automation 93

The exposed automation objects of NeuroCheck are listed in section 7.2 and described in
detail in the subsequent sections. In the following we will first have a look at possible
applications of using OLE automation with NeuroCheck.

7.1.3 Applications of OLE Automation in NeuroCheck
As an example, an OLE automation client connected to NeuroCheck can open a check
routine, put NeuroCheck into automatic mode, execute the check routine, read the results of
the inspection run and display them in a special way which is not available in NeuroCheck.
Note that a controller is not restricted to connect to only a single server. It can thus control
NeuroCheck and a database management system simultaneously and transfer result data
computed by NeuroCheck into the database or control the operation of NeuroCheck based on
information from the database.
The following list is intended to give you an idea of what can be achieved with NeuroCheck
and OLE automation. This is of course not the end of it. The possibilities are practically
without limit, as it is the express purpose of OLE automation to enhance each program's
capabilities by borrowing functionality from other specialized programs. You can, for
example:
• Design a specialized user interface for the production line personnel; this user interface

might feature simplified input of a small subset of parameters relevant during production
operation, give detailed instructions for certain events, or display custom statistics and
charts;

• Use a program written in a standard programming language like Visual Basic® to perform
communication and control tasks specific to your problem instead of applying a PLC;

• Hide NeuroCheck during production operation and still use it as a convenient development
and test environment for the configuration of your inspection routines;

• Keep NeuroCheck on the screen to visualize the inspection process but prevent user
interaction with NeuroCheck in automatic mode;

• Connect NeuroCheck to a database, e.g. for setting target values at runtime or storing error
statistics;

• Integrate NeuroCheck into your process control system or communication setup;
• Implement a teach functionality specific to your inspection tasks;
• Use NeuroCheck as an intelligent sensor in a closed-loop control system realized by

evaluating the results in your OLE controller.

7.1.4 Capabilities of the NeuroCheck OLE Automation Interface
This section will give you an idea of the extent of NeuroCheck's OLE automation interface.
The exposed automation objects and their properties and methods are detailed in section 7.2
and following. You can control the following operations in NeuroCheck through OLE
automation:
• load and save check routines,
• switch operating modes,
• execute a check routine and read its result,
• access image data,

94 NeuroCheck Programmer’s Reference

• transfer complete images to other applications via clipboard,
• obtain information about the hierarchical structure of a check routine and alter

designations like names, descriptions, comments, etc.
• activate or deactivate individual checks,
• alter parameters and target values of individual check functions,
• read result and status information for individual checks and check functions,
• read result values of individual check functions,
• obtain information about the currently running server, like version number, license level,

license number, etc.
• change size, position, state and visibility of NeuroCheck’s main window,
• get information about devices configured in NeuroCheck’s device manager,
• read input and output states and set output bits of all digital I/O boards and field bus

devices configured in NeuroCheck’s device manager,
• select layouts for the automatic mode screen,
• select camera and zoom for live image display,
• get detailed diagnostic information.

7.1.5 Restrictions
In contrast to plug-in functions or custom communication which are integrated in NeuroCheck
an OLE controller is an independent application. OLE automation can be seen as remote
control of NeuroCheck. When controlled through OLE automation, NeuroCheck acts as a
slave. The OLE client takes the role of the master which means that:
• The client takes the place of the usual user interface;
• The client is the sole entity allowed to initiate actions in NeuroCheck, like the execution

of an inspection run or a change of check routines.
In effect, the client is responsible for the entire control and timing of the application.
Therefore, the following restrictions apply when running NeuroCheck through OLE
automation:
• Interactive use of NeuroCheck’s application window is disabled.
• Input signals configured under System/Remote Control (start check, select check routine,

adjust cameras) are ignored.
• Self test is not available.
• Operating modes "Test" and "Configure Automatic Screen" are not accessible (of course

the usual restrictions related to a particular license level still apply; even using OLE
automation you will not be able to switch a runtime version to "Manual" mode);

• Settings for start-up behavior made under System/Options are ignored.

7.1.6 Preparing NeuroCheck for Control by OLE Automation
As stated above, certain restrictions apply when NeuroCheck is controlled by an OLE client.
This means that NeuroCheck must be configured explicitly to accept commands from an OLE
client. This configuration takes place in the Remote Control dialog opened by the Remote-
Control command from the System menu. For NeuroCheck to be controlled via OLE you

OLE Automation 95

have to activate the appropriate option in this dialog, as shown in the following figure.

Figure 15: NeuroCheck must be configured to be controlled via OLE automation
using the Remote Control command in the System menu

7.1.7 Programming Language
The COM specification is indepent of the programming language. This means that an OLE
client can be written in any OLE-capable programming language, e.g. the various C/C++
environments, Visual Basic® or Borland Delphi®. Unless your controller needs to execute
very complex algorithms, the decisive factor for the speed of execution will be the number of
calls to the OLE interface due to the handling of OLE commands through the Automation
Manager of the operating system.
Also important for the speed of your OLE application is the data exchange method used. You
will see in section 7.7.1 that there are some interface functions using the SafeArray concept
for data exchange. These functions can be used most effectively in C/C++. Although they can
be applied in other languages, even pointer-challenged languages like Visual Basic®, other
means of data exchange are much simpler to program, though less efficient.

7.1.8 Using Type Libraries
Type libraries contain information about data types, interfaces, member functions, and object
classes exposed by an OLE server. NeuroCheck provides a type library called NCheck.tlb.
It is essential for programming the OLE interface in C/C++, but can also be very helpful for
Visual Basic® or Delphi® programmers. Including the type library in their projects enables
early binding and automatic syntax checking by the compiler and allows for convenient use of
NeuroCheck's on-line help within the development environment of the programming
language.

96 NeuroCheck Programmer’s Reference

7.2 Exposed Automation Objects
The following table lists the automation objects exposed by NeuroCheck. Subsequent sections
explain the properties of these automation objects in detail.

Object name Description

NCApplication Top-level object; provides a standard way for OLE automation
controllers to retrieve and navigate low-level objects.

CheckRoutine Provides a way to change the settings of a NeuroCheck check
routine.

SingleCheck Gives access to the properties of individual checks.

CheckFunction Gives access to the properties of check functions.

The following figure depicts this object hierarchy.

Figure 16: Hierachy of exposed automation objects

7.3 NCApplication Object

7.3.1 Properties
This section lists the properties of the NCApplication object. All constants are listed in
ncauto.h.

Note: C/C++ programmers must access the properties as follows:

ptrObj GetPropertyName() for reading a property

ptrObj SetPropertyName(NewValue) for setting a property (not available for read only

OLE Automation 97

properties)

The ptrObj placeholder represents a pointer to the NCApplication object, PropertyName
the name of the property and NewValue the new value the property is set to.

ActiveCamera

The ActiveCamera property sets or returns the index of the camera from which the image is
captured in live mode.

Syntax

object.ActiveCamera [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I2

Remarks
The ActiveCamera property can only be accessed in live mode.

ActiveCameraName

The ActiveCameraName property returns the designation of the camera from which the live
image is captured. It is only available in live mode. Camera designations correspond to those
in the Device Manager dialog.

Syntax

object.ActiveCameraName

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

ActiveCameraZoom

The ActiveCameraZoom property sets or returns the zoom factor of the live image view. It is
only available in live mode.

98 NeuroCheck Programmer’s Reference

Syntax

object.ActiveCameraZoom [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I2

Possible settings for ActiveCameraZoom are:

Constant Value Description
NC_ZOOM_100 100 100 % of original image size
NC_ZOOM_50 50 50 % of original image size
NC_ZOOM_25 25 25 % of original image size
NC_ZOOM_10 10 10 % of original image size

ActiveCheckRoutine

The ActiveCheckRoutine property returns the active check routine object or VT_EMPTY if
none is available.

Syntax

object.ActiveCheckRoutine

The object placeholder represents the NCApplication object.

Return Type
VT_DISPATCH

Application

The Application property returns the application object.

Syntax

object.Application

The object placeholder represents the NCApplication object.

OLE Automation 99

Return Type
VT_DISPATCH

Caption

The Caption property returns the title of the application window.

Syntax

object.Caption

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

DeviceCount

The DeviceCount property returns the number of devices of the type specified by DeviceType
configured in NeuroCheck’s Device Manager. If the input argument is incorrect, the property
returns -1.

Syntax

object.DeviceCount(DeviceType)

The object placeholder represents the NCApplication object.

Return Type
VT_I2

Argument Type Description
DeviceType VT_I2 Type of the device.

Possible settings for DeviceType are:

Constant Value Description
NC_DEVICE_FRAMEGRABBER 0 Frame grabber board
NC_DEVICE_DIGITALIO 1 Digital I/O board
NC_DEVICE_FIELDBUS 2 Field Bus board
NC_DEVICE_SERIAL 3 Serial Interface
NC_DEVICE_OEMCOM 4 Custom Communication Interface
NC_DEVICE_IEEE1394 5 IEEE 1394 camera

100 NeuroCheck Programmer’s Reference

DeviceName

The DeviceName property returns the name of a device configured in NeuroCheck’s Device
Manager. The device is specified by the input arguments DeviceType and DeviceIndex. If the
input arguments are incorrect, the property returns an empty string.

Syntax

object.DeviceName(DeviceType, DeviceIndex)

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

Argument Type Description
DeviceType VT_I2 Type of the device.
DeviceIndex VT_I2 Index of the device (counted from

0).

The possible settings for argument DeviceType correspond to those for the DeviceCount
property of the NCApplication object.

ExeMajorVersion

The ExeMajorVersion property returns the major version number of the application's
executable file (always greater or equal to 4).

Syntax

object.ExeMajorVersion

The object placeholder represents the NCApplication object.

Return Type
VT_I2

ExeMinorVersion

The ExeMinorVersion property returns the minor version number of the application's
executable file (always greater or equal to 0).

OLE Automation 101

Syntax

object.ExeMinorVersion

The object placeholder represents the NCApplication object.

Return Type
VT_I2

FullName

The FullName property returns the file specification for the application, including path.

Syntax

object.FullName

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

Height

The Height property returns or sets the distance between the top and bottom edge of the main
application window. See Figure 17.

Syntax

object.Height [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I4

Remarks
The minimum value of the Height property is 460.

IgnoreCommunication

The IgnoreCommunication property sets or returns the value of the ignore cummunication
option of NeuroCheck. If set to TRUE, NeuroCheck will ignore all functions requiring signals
to be received via digital I/O or field bus; The default is FALSE.

102 NeuroCheck Programmer’s Reference

Syntax

object.IgnoreCommunication [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_BOOL

InterfaceVersion

The InterfaceVersion property returns the version number of the OLE automation interface
(always greater or equal to 1).

Syntax

object.InterfaceVersion

The object placeholder represents the NCApplication object.

Return Type
VT_I2

LastError

The LastError property returns a value indicating the most recent error that occured in
NeuroCheck. Reading LastError resets the property to its initial value, i.e. to zero. The error
codes are listed in the Quick Reference section of this manual.

Syntax

object.LastError

The object placeholder represents the NCApplication object.

Return Type
VT_I4

Remarks
The LastError property encodes both a general error type and a detailed error number. With
ErrorType denoting the general error type and ErrorDetail denoting the detailed error
number, LastError is computed as follows:

LastError = (ErrorType * 256) + ErrorDetail

OLE Automation 103

In effect, the least significant byte of the return value contains the ErrorDetail number,
one byte higher you will find the ErrorType value.

Example
The following Visual Basic® sample code reads the LastError property and returns the
corresponding type and detail numbers (for the non-Visual-Basic programmers: the "\"
denotes an integer division, Mod a modulo operation).

' ...
' do critical operation here, e.g. opening a check routine
' ...
' get debug information
Dim LastErrorNumber as Integer
LastErrorNumber = NCApplication.LastError
If LastErrorNumber <> 0 Then

MsgBox "LastError returned " & CStr(LastErrorNumber) _
& ", Error Type: " & CStr(LastErrorNumber \ 256) _
& ", Error Detail: " & CStr(LastErrorNumber Mod 256)

End If
' ...

Left

The Left property returns or sets the distance between the left edge of the physical screen and
the main application window. See Figure 17.

Syntax

object.Left [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I4

LicenseLevel

The LicenseLevel property returns the license level of NeuroCheck encoded in the security
key.

Syntax

object.LicenseLevel

The object placeholder represents the NCApplication object.

104 NeuroCheck Programmer’s Reference

Return Type
VT_I2

Possible result values of LicenseLevel are:

Constant Value Description
NC_VERSION_LITE 0 Demo version
NC_VERSION_RUNTIME 2 Runtime version
NC_VERSION_FULL 4 Premium Edition (fully licensed version)
NC_VERSION_PROFESSIONAL 16 Professional Edition

LicenseNumber

The LicenseNumber property returns the license number encoded in the security key.

Syntax

object.LicenseNumber

The object placeholder represents the NCApplication object.

Return Type
VT_I4

Name

The Name property returns the name of the application.

Syntax

object.Name

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

OperatingMode

The OperatingMode property returns or sets the operating mode of the application.

OLE Automation 105

Syntax

object.OperatingMode [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I2

Possible settings for OperatingMode are:

Constant Value Description
NC_MODE_MANUAL 0 Manual mode (not available for runtime version)
NC_MODE_TEST 1 Test mode (read only)
NC_MODE_LIVE 2 Live mode
NC_MODE_AUTOMATIC 3 Automatic mode
NC_MODE_AUTOCONFIG 4 Configure automatic screen mode (read only)

Remarks
Changing the OperatingMode property requires a check routine to be loaded. Changing to
Manual Mode requires an installation of Internet Explorer 4.0 or higher. Furthermore, Manual
mode is not accessible for a runtime license of NeuroCheck. Both Test mode and Configure
automatic screen mode are not accessible through OLE automation at all, i.e. setting the
OperatingMode Property to one of the corresponding values will be without effect.

Parent

The Parent property returns NULL.

Syntax

object.Parent

The object placeholder represents the NCApplication object.

Return Type
VT_DISPATCH

Path

The Path property returns the path specification for the executable file of the application.

106 NeuroCheck Programmer’s Reference

Syntax

object.Path

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

ReadFromBitmap

The ReadFromBitmap property sets or returns the simulate image capture option of
NeuroCheck. If set to TRUE, all Transfer Image functions in the check routine will be
switched to bitmap file instead of camera images; The default is FALSE.

Syntax

object.ReadFromBitmap [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_BOOL

SubDeviceCount

The SubDeviceCount property returns the number of sub devices of the type specified by
DeviceType, DeviceIndex and SubDeviceType configured in NeuroCheck’s Device Manager.
If the input arguments are incorrect, the property returns -1.

Syntax

object.SubDeviceCount(DeviceType, DeviceIndex, SubDeviceType)

The object placeholder represents the NCApplication object.

Return Type
VT_I2

Argument Type Description
DeviceType VT_I2 Type of the parent device.
DeviceIndex VT_I2 Index of the parent device.
SubDeviceType VT_I2 Type of the sub device.

OLE Automation 107

For the possible settings for DeviceType please refer to the DeviceCount property of the
NCApplication object. The possible settings for SubDeviceType are:

Constant Value Description
NC_SUBDEVICE_CAMERA 0 Camera
NC_SUBDEVICE_DIGINPUT 1 Digital input or field bus input bit
NC_SUBDEVICE_DIGOUTPUT 2 Digital output or field bus output bit

Remarks
Please note that the camera count indicates simply the number of camera channels for the
given frame grabber. It does not correspond to the number of cameras currently activated in
NeuroCheck’s Device Manager.

SubDeviceName

The SubDeviceName property returns the name of a sub device configured in NeuroCheck’s
Device Manager. The device is specified by the input arguments DeviceType, DeviceIndex,
SubDeviceType and SubDeviceIndex. If the input arguments are incorrect, the property returns
an empty string.

Syntax

object.SubDeviceName(DeviceType, DeviceIndex, SubDeviceType,
SubDeviceIndex)

The object placeholder represents the NCApplication object.

Return Type
VT_BSTR

Argument Type Description
DeviceType VT_I2 Type of the parent device.
DeviceIndex VT_I2 Index of the parent device (counted from

0).
SubDeviceType VT_I2 Type of the sub device.
SubDeviceIndex VT_I2 Index of the sub device (counted from 0).

For the possible settings of DeviceType and SubDeviceType please refer to the DeviceCount
and SubDeviceCount of the NCApplication object.

Top

The Top property returns or sets the distance between the top edge of the physical screen and

108 NeuroCheck Programmer’s Reference

the main application window. See Figure 17.

Syntax

object.Top [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I4

Width

The Width property returns or sets the distance between the left and right edges of the main
application window. See Figure 17.

Syntax

object.Width [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I4

Remarks
The minimum value of the Width property is 620.

Figure 17: Properties for controlling size and position of the main application window.

OLE Automation 109

WindowState

The WindowState property returns or sets a value indicating the visual state of the main
application window at run time. The property returns -1 if it is not accessible . Using this
property requires a check routine to be loaded.

Syntax

object.WindowState [=value]

The object placeholder represents the NCApplication object.

Return Type
VT_I2

Possible settings for WindowState are:

Constant Value Description
NC_WINDOW_NORMAL 1 Normal (Default)
NC_WINDOW_MINIMIZED 2 Minimized (minimized to an icon)
NC_WINDOW_MAXIMIZED 3 Maximized (enlarged to maximum size)

Remarks
As long as there is no check routine loaded in NeuroCheck, WindowState is not accessible
and returns -1. Setting the Visible property of the CheckRoutine object to TRUE resets
WindowState to its default value, i.e. to NC_WINDOW_NORMAL.

7.3.2 Methods
This section lists the methods available for the NCApplication object.

Execute

The Execute method starts execution of the active check routine in automatic mode. It does
not take parameters. If the check routine was started successfully, the method returns TRUE. If
an error occurred or if NeuroCheck is not operating in automatic mode, it returns FALSE.

Syntax

object.Execute()

The object placeholder represents the NCApplication object.

110 NeuroCheck Programmer’s Reference

Return Type
VT_BOOL

Remarks
Please note that the Execute method will not work
• for the demo version of NeuroCheck,
• if no check routine is loaded,
• if NeuroCheck is not configured for OLE control (under System/Remote Control) ,
• if NeuroCheck is not operating in automatic mode.
Examine the LastError property to find out the reason for the failure.

Open

The Open method opens an existing check routine. It takes the name of the check routine to
be opened as argument and returns TRUE, if the file was opened successfully, or FALSE, if
the check routine could not be opened.

Syntax

object.Open(FileName)

The object placeholder represents the NCApplication object.

Return Type
VT_BOOL

Argument Type Description
FileName VT_BSTR Name of the check routine to be opened.

Remarks
Remember to release the object variable assigned to a check routine before opening a new
check routine, as explained for the ActiveCheckRoutine property of the NCApplication
object.

Quit

The Quit method closes the open check routine and exits the application.

OLE Automation 111

Syntax

object.Quit()

The object placeholder represents the NCApplication object.

Return Type
None

ReadDigitalInput

The ReadDigitalInput method reads the current state of a digital input. It takes two
arguments which specify the digital I/O board and the input to be read. The method returns the
state of the input, i.e. TRUE or FALSE, if the input was read successfully, or VT_EMPTY if an
error occurred.

Syntax

object.ReadDigitalInput(BoardIndex, InputNumber)

The object placeholder represents the NCApplication object.

Return Type
VT_VARIANT

Argument Type Description
BoardIndex VT_I2 Index of digital I/O board (counted from 0).
InputNumber VT_I2 Number of the input to be read (counted from 0).

ReadDigitalInputWord

The ReadDigitalInputWord method reads the current states of all 16 digital inputs of one
digital I/O board. It takes one argument which specifies the digital I/O board to be read. The
method returns an integer value encoding the states of the inputs, or VT_EMPTY if an error
occurred.

Syntax

object.ReadDigitalInputWord(BoardIndex)

The object placeholder represents the NCApplication object.

112 NeuroCheck Programmer’s Reference

Return Type
VT_VARIANT

Argument Type Description
BoardIndex VT_I2 Index of digital I/O board (counted from 0).

Remarks
The return value of method ReadDigitalInputWord is the decimal value of a binary number
encoding the current state of the 16 digital inputs. Bit j corresponds to input number j. A bit
value of 1 indicates that the input is set, a value of 0 that the input is not set. For example, a
return value of 9dec = (0000 0000 0000 1001)bin means that only the inputs number 0 and
number 3 are set.

ReadDigitalOutput

The ReadDigitalOutput method reads the current state of a digital output. It takes two
arguments which specify the digital I/O board and the output to be read. The method returns
the state of the output, i.e. TRUE or FALSE, if the output was read successfully, or
VT_EMPTY if an error occurred.

Syntax

object.ReadDigitalOutput(BoardIndex, OutputNumber)

The object placeholder represents the NCApplication object.

Return Type
VT_VARIANT

Argument Type Description
BoardIndex VT_I2 Index of digital I/O board (counted from 0)
OutputNumber VT_I2 Number of the output to be read (counted from 0)

ReadDigitalOutputWord

The ReadDigitalOutputWord method reads the current state of all 16 digital outputs of one
digital I/O board. It takes one argument which specifies the digital I/O board to be read. The
method returns an integer value encoding the state of the outputs, or VT_EMPTY if an error
occurred.

OLE Automation 113

Syntax

object.ReadDigitalOutputWord(BoardIndex)

The object placeholder represents the NCApplication object.

Return Type
VT_VARIANT

Argument Type Description
BoardIndex VT_I2 Index of digital I/O board (counted from 0).

Remarks
Please refer to the ReadDigitalInputWord methof for a description of the encoding of the
return value.

ReadFieldBusInputBit

The ReadFieldBusInputBit method reads the current state of an input bit of a field bus
device. It takes two arguments which specify the field bus board and the input bit to be read.
The method returns the state of the input bit, i.e. TRUE or FALSE, if the input was read
successfully, or VT_EMPTY if an error occurred.

Syntax

object.ReadFieldBusInputBit(BoardIndex, InputNumber)

The object placeholder represents the NCApplication object.

Return Type
VT_VARIANT

Argument Type Description
BoardIndex VT_I2 Index of field bus board (counted from 0).
InputNumber VT_I2 Number of the input bit to be read (counted from 0).

ReadFieldBusOutputBit

The ReadFieldBusOutputBit method reads the current state of an output bit of a field bus
device. It takes two arguments specifying the field bus board and the output bit to be read.
The method returns the state of the output bit, i.e. TRUE or FALSE, if the output was read
successfully, or VT_EMPTY if an error occurred.

114 NeuroCheck Programmer’s Reference

Syntax

object.ReadFieldBusOutputBit(BoardIndex, OutputNumber)

The object placeholder represents the NCApplication object.

Return Type
VT_BOOL or VT_EMPTY

Argument Type Description
BoardIndex VT_I2 Index of field bus board (counted from 0).
OutputNumber VT_I2 Number of the output bit to be read (counted from 0).

SetDigitalOutput

The SetDigitalOutput method sets the state of a digital output. It takes three arguments
specifying the digital I/O board, the output to be set, and the state the output will be set to.
The method returns TRUE if the output could be set, or FALSE if an error occurred.

Syntax

object.SetDigitalOutput(BoardIndex, OutputNumber, NewState)

The object placeholder represents the NCApplication object.

Return Type
VT_BOOL

Argument Type Description
BoardIndex VT_I2 Index of digital I/O board (counted from 0).
OutputNumber VT_I2 Number of the output to be set (counted from 0).
NewState VT_BOOL State to which the output will be set.

SetDigitalOutputWord

The SetDigitalOutputWord method sets all 16 digital outputs of a digital I/O board at once.
It takes three arguments, the first one specifying the digital I/O board to be set, the second one
specifying the bits to be set and the third one holding the values of the bits. The method
returns TRUE if the outputs could be set, or FALSE if an error occurred.

OLE Automation 115

Syntax

object.SetDigitalOutputWord(BoardIndex, BitMask, BitStates)

The object placeholder represents the NCApplication object.

Return Type
VT_VARIANT

Argument Type Description
BoardIndex VT_I2 Index of digital I/O board (counted from 0).
BitMask VT_I4 Integer encoding the bit mask specifying the outputs to be set.
BitStates VT_I4 Integer encoding the states to which the outputs will be set.

Remarks
Each of the 16 bits of the arguments BitMask and BitStates represents one of the 16 digital
outputs. BitMask is used to specify the outputs to be altered. If bit number j is set in BitMask,
i.e. if it is 1, then the corresponding output j will be set or reset according to bit number j in
BitStates, otherwise the current state of the output will not be changed ("don't care"). A set bit
in BitStates causes the corresponding output to be set, a bit value of 0 causes it to be reset –
provided that the corresponding bit in the BitMask argument is set.

Example
The following example will set output number 0 and number 3 and reset output number 1, but
it will not alter any of the other 13 outputs. Therefore BitMask is (0000 0000 0000 1011)bin =
0x000Bhex = 11dec and BitStates is (0000 0000 0000 1001)bin = 0x0009hex = 9dec

' ...
If Not NCApplication.SetDigitalOutputWord(0, 11, 9) Then

MsgBox "Could not set digital outputs"
End If
' ...

SetFieldBusOutputBit

The SetFieldBusOutputBit method sets an output bit of a field bus device. It takes three
arguments, specifying the field bus board, the output bit to be set and the state the output bit
will be set to. The method returns TRUE if the output bit was set successfully, or FALSE if an
error occurred.

Syntax

object.SetFieldBusOutputBit(BoardIndex, OutputNumber, NewState)

The object placeholder represents the NCApplication object.

116 NeuroCheck Programmer’s Reference

Return Type
VT_BOOL

Argument Type Description
BoardIndex VT_I2 Index of field bus board (counted from 0).
OutputNumber VT_I2 Number of the output bit to be set (counted from 0).
NewState VT_BOOL State to which the output bit will be set.

7.3.3 Wrapper
The Visual C++ ClassWizard will create the following wrapper class from the type library:

class INCApplication : public COleDispatchDriver

7.4 CheckRoutine Object

7.4.1 Properties
This section lists the properties of the CheckRoutine object. All constants are listed in
ncauto.h.

Note: C/C++ programmers must access the properties as follows:

ptrObj GetPropertyName() for reading a property

ptrObj SetPropertyName(NewValue) for setting a property (not available for read only
properties)

The ptrObj placeholder represents a pointer to the NCApplication object, PropertyName
the name of the property and NewValue the new value the property is set to.

ActiveScreenLayout

The ActiveScreenLayout property sets or returns the index of the screen layout of the
automatic screen.

Syntax

object.ActiveScreenLayout [=value]

The object placeholder represents the CheckRoutine object.

OLE Automation 117

Return Type
VT_I2

Remarks
The ActiveScreenLayout property can only be changed in automatic mode.

ActiveScreenLayoutName

The ActiveScreenLayoutName property returns the designation of the currently used screen
layout of the automatic screen.

Syntax

object.ActiveScreenLayoutName

The object placeholder represents the CheckRoutine object.

Return Type
VT_BSTR

Remarks
The ActiveScreenLayoutName property is only accessible in automatic mode.

Application

The Application property returns the application object.

Syntax

object.Application

The object placeholder represents the CheckRoutine object.

Return Type
VT_DISPATCH

Author

The Author property returns or sets the information about the author of the check routine. See
Figure 18.

118 NeuroCheck Programmer’s Reference

Syntax

object.Author [=value]

The object placeholder represents the CheckRoutine object.

Return Type
VT_BSTR

Comments

The Comments property returns or sets the additional description of the check routine. See
Figure 18.

Syntax

object.Comments [=value]

The object placeholder represents the CheckRoutine object.

Return Type
VT_BSTR

Count

The Count property returns the number of individual checks in the check routine.

Syntax

object.Count

The object placeholder represents the CheckRoutine object.

Return Type
VT_I2

CurrentCheckResult

The CurrentCheckResult property returns the result of the most recent execution of the
individual check specified by argument SCIndex.

OLE Automation 119

Syntax

object.CurrentCheckResult(SCIndex)

The object placeholder represents the CheckRoutine object.

Return Type
VT_BOOL

Argument Type Description
SCIndex VT_I2 Number of the individual check, whose result is to be retrieved.

CurrentResult

The CurrentResult property returns the final result of the most recent execution of the
complete check routine.

Syntax

object.CurrentResult

The object placeholder represents the CheckRoutine object.

Return Type
VT_BOOL

FileName

The FileName property returns the filename of the check routine, not including path.

Syntax

object.FileName

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BSTR

FullName

The FullName property returns the fully qualified path of the check routine file.

120 NeuroCheck Programmer’s Reference

Syntax

object.FullName

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BSTR

Heading

The Heading property returns or sets the user-defined name of the check routine (root node in
the structure tree view). See Figure 18.

Syntax

object.Heading [=value]

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BSTR

Remarks
Do not confuse this with the Name property of the check routine.

Name

The Name property returns the filename of the check routine, not including path.

Syntax

object.Name

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BSTR

Remarks
The Name property is supported for compatibility reasons, use the FileName property
instead.

OLE Automation 121

OID

The OID property sets or returns the unique object identification number (OID).

Syntax

object.OID

The object placeholder represents the CheckRoutine object.

Return Type
VT_I4

Parent

The Parent property returns the application object.

Syntax

object.Parent

The object placeholder represents the CheckRoutine object.

Return Type
VT_DISPATCH

PartsCheckedNOk

The PartsCheckedNOk property returns the total number of parts checked with final result
"Part not O.K." since the active check routine has been opened.

Syntax

object.PartsCheckedNOk

The object placeholder represents the CheckRoutine object.

Return Type
VT_I4

PartsCheckedOk

The PartsCheckedOk property returns the total number of parts checked with final result
"Part O.K." since the active check routine has been opened.

122 NeuroCheck Programmer’s Reference

Syntax

object.PartsCheckedOk

The object placeholder represents the CheckRoutine object.

Return Type
VT_I4

Path

The Path property returns the path specification for the check routine, not including the
filename or filename extension.

Syntax

object.Path

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BSTR

Saved

The Saved property returns a Boolean value indicating whether the check routine has been
saved after the most recent change: TRUE if the check routine has not been changed since it
was last saved, FALSE if the check routine has not been saved since the most recent change.

Syntax

object.Saved

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BOOL

Visible

The Visible property sets or returns whether the check routine object (in effect: the
NeuroCheck window) is visible to the user or hidden; The default is FALSE.

OLE Automation 123

Syntax

object.Visible [=value]

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BOOL

Remarks
According to the automation interface guidelines the visibility state is a property of the main
data object, not the application object. Therefore, the visibility of the main application
window has to be set through the data object.

Figure 18: Descriptive properties of CheckRoutine, SingleCheck and CheckFunction
object.

7.4.2 Methods
This section lists the methods of the CheckRoutine object.

Save

The Save method saves the check routine to the file specified in the FullName property of the
check routine object. It returns a Boolean value indicating success or failure.

Syntax

object.Save

The object placeholder represents the CheckRoutine object.

124 NeuroCheck Programmer’s Reference

Return Type
VT_ BOOL

Remarks
The Save method fails if the check routine is protected by a password, i.e. it returns FALSE.

SaveAs

The SaveAs method saves changes to the check routine object in a different file specified by
the FileName argument. It returns a Boolean value indicating success or failure.

Syntax

object.SaveAs(FileName)

The object placeholder represents the CheckRoutine object.

Return Type
VT_ BOOL

Argument Type Description
FileName VT_BSTR Name of the new file, optionally including path.

Remarks
The SaveAs method does not verify whether the saving operation overwrites an existing file
unless this file represents a check routine protected by a password. In this case, the check
routine cannot be saved and SaveAs returns FALSE.

7.4.3 Collection Properties and Methods
The CheckRoutine object provides parts of the functionality of a collection object. Therefore
one additional property and one additional method are available.

_NewEnum Property

The _NewEnum property provides an enumerator object that implements IEnumVARIANT.
It is used by collection handling like the For Each loop in Visual Basic®.

OLE Automation 125

Return Type
VT_DISPATCH

Example
The following Visual Basic® example displays the name of each individual check of the check
routine in a message box.

' ...
Dim SingleCheck As Object
For Each SingleCheck In CheckRoutine

MsgBox SingleCheck.Name
Next SingleCheck
' ...

Item Method

The Item method returns the given individual check object from the collection specified by
argument SCIndex. If no check object is available for argument SCIndex, the Item method
returns VT_EMPTY.

Syntax

object.Item(SCIndex)

The object placeholder represents the CheckRoutine object.

Return Type
VT_DISPATCH

Argument Type Description
SCIndex VT_VARIANT Indicates the individual check object to be returned.

Remarks
If SCIndex is an integer value, the Item method returns the individual check object with
position SCIndex in the collection of the CheckRoutine object. If SCIndex is a string, the
Item method always returns the first individual check in the collection whose name is equal to
string SCIndex.

Example
The following Visual Basic® sample code shows how to access the first individual check of
the check routine’s collection, and then the first individual check with name “OCR“ (provided
there exists a check with this name).

' ...
Dim SingleCheck As Object
Set SingleCheck = CheckRoutine.Item(0)
' ...

126 NeuroCheck Programmer’s Reference

Set SingleCheck = CheckRoutine.Item(“OCR“)
If SingleCheck is Nothing Then

MsgBox “Check ““OCR““ not found!“
End If
' ...

7.4.4 Wrapper
The Visual C++ ClassWizard will create the following wrapper class from the type library:

class ICheckRoutine : public COleDispatchDriver

7.5 SingleCheck Object

7.5.1 Properties
This section lists the properties of the SingleCheck object.

CheckEnabled

The CheckEnabled property sets or returns the current execution state of the check object. If
TRUE, execution of the check is enabled, if FALSE it is disabled.

Syntax

object.CheckEnabled [=value]

The object placeholder represents the SingleCheck object.

Return Type
VT_BOOL

Remarks
The CheckEnabled property replaces the methods IsCheckEnabled and EnableCheck.

Count

The Count property returns the number of check functions in the check.

Syntax

object.Count

The object placeholder represents the SingleCheck object.

OLE Automation 127

Return Type
VT_I2

CurrentResult

The CurrentResult property returns the final result of the most recent execution of the single
check.

Syntax

object.CurrentResult

The object placeholder represents the SingleCheck object.

Return Type
VT_BOOL

Description

The Description property returns or sets the description text of a check. See Figure 18.

Syntax

object.Description [=value]

The object placeholder represents the SingleCheck object.

Return Type
VT_BSTR

LastFunction

The LastFunction property returns the index of the last check function whose result was
"O.K." for the most recent execution of the individual check, i.e. the last check function that
did not cause an "not O.K." either by a target value violation or because of an internal error.

Syntax

object.LastFunction

The object placeholder represents the SingleCheck object.

128 NeuroCheck Programmer’s Reference

Return Type
VT_I2

Remarks
LastFunction can be used to obtain information about which check function caused the "not
O.K." of an individual check. If the LastFunction property returns -1, either the individual
check has not been executed so far (ErrorCode property of first check function returns -1), or
the first check function of the individual check returned "not O.K." (ErrorCode property
greater or equal to 1).

Example
The following Visual Basic® code excerpt shows how to examine the cause of the failure of an
individual check.

If Not SingleCheck.CurrentResult Then
If SingleCheck.LastFunction < 0 And _

SingleCheck.Item(0).ErrorCode < 0 Then
MsgBox SingleCheck.Name & " was not executed"

Else
MsgBox SingleCheck.Item(SingleCheck.LastFunction).Name _

& " failed"
End If

End If

Name

The Name property returns or sets the user-defined name of a check. See Figure 18.

Syntax

object.Name [=value]

The object placeholder represents the SingleCheck object.

Return Type
VT_BSTR

NumOfImages

The NumOfImages property returns the number of available images in the internal runtime
data stack.

OLE Automation 129

Syntax

object.NumOfImages

The object placeholder represents the SingleCheck object.

Return Type
VT_I2

OID

The OID property sets or returns the unique object identification number (OID).

Syntax

object.OID

The object placeholder represents the SingleCheck object.

Return Type
VT_I4

Parent

The Parent property returns the active CheckRoutine object.

Syntax

object.Parent

The object placeholder represents the SingleCheck object.

Return Type
VT_DISPATCH

SCIndex

The SCIndex property returns the index of the individual check within the collection of the
check routine.

Syntax

object.SCIndex

The object placeholder represents the SingleCheck object.

130 NeuroCheck Programmer’s Reference

Return Type
VT_I2

Example
The following sample code shows how to determine the current check result for the given
individual check (of course the straight forward solution is to use the CurrentResult property
of the SingleCheck object).

' ...
If CheckRoutine.CurrentCheckResult(SingleCheck.SCIndex) Then
 MsgBox SingleCheck.Name & " was OK."
End If
' ...

7.5.2 Methods
This section lists the methods of the SingleCheck object.

CopyImageToClipboard

Call the CopyImageToClipboard method to copy a gray level image from the internal
runtime data stack to the Clipboard. The image to be copied is specified by the ImageIndex
argument. The method returns a Boolean value indicating success or failure of the copy
operation.

Syntax

object.CopyImageToClipboard(ImageIndex, ImageFormat, ImageZoom)

The object placeholder represents the SingleCheck object.

Return Type
VT_BOOL

Argument Type Description
ImageIndex VT_I2 Index of the image on the stack to be copied to the Clipboard.
ImageFormat VT_I2 Format of the image copied to the Clipboard
ImageZoom VT_I2 Scale factor of the image copied to the Clipboard.

Possible settings for ImageFormat are:

OLE Automation 131

Constant Value Description
NC_CF_DIB 8 monochrome image in device-independent bitmap

format
NC_CF_COLOR_DIB 9 color image in device-independent bitmap format

Possible settings for ImageZoom are:

Constant Value Description
NC_ZOOM_200 200 200 % of original image size
NC_ZOOM_100 100 100 % of original image size
NC_ZOOM_50 50 50 % of original image size
NC_ZOOM_25 25 25 % of original image size
NC_ZOOM_10 10 10 % of original image size

Example
The following example demonstrates how to copy the first image on the internal data stack to
the clipboard. It is copied as a device-independent bitmap in normal size with color
information. If no color information is present in the current image by default the normal grey-
level image will be taken.

' ...
' Clear contents of clipboard
Clipboard.Clear
If SingleCheck.CopyImageToClipboard(_

0, NC_CF_COLOR_DIB, NC_ZOOM_100) Then
' Copy image from Clipboard to Picture property of VB form
Picture = Clipboard.GetData()

End If
' ...

EnableCheck

The EnableCheck method enables or disables execution of the individual check. It returns a
Boolean value indicating the previous execution state.

Syntax

object.EnableCheck(bEnable)

The object placeholder represents the SingleCheck object.

132 NeuroCheck Programmer’s Reference

Return Type
VT_BOOL

Argument Type Description
bEnable VT_BOOL If TRUE, execution of the check will be enabled, if FALSE it will

be disabled.

Remarks
Method EnableCheck is deprecated, please use property CheckEnabled instead.

GetImageData

The GetImageData method returns the gray level data of the image in the internal runtime
data stack specified by argument ImageIndex. The method returns a safearray containing the
gray level data of the image bytewise.

Syntax

object.GetImageData(ImageIndex)

The object placeholder represents the SingleCheck object.

Return Type
VT_VARIANT

Argument Type Description
ImageIndex VT_I2 Number of the image to be returned on the stack.

Remarks
This method is optimized for use with C/C++. See example in section 7.9.9.

GetImageProp

The GetImageProp method returns the properties of the image in the internal runtime data
stack specified by the ImageIndex argument. The method returns a safearray containing the
properties of the image.

Syntax

object.GetImageProp(ImageIndex)

The object placeholder represents the SingleCheck object.

OLE Automation 133

Return Type
VT_VARIANT

Argument Type Description
ImageIndex VT_I2 Index of the image on the stack whose properties

are to be returned.

Remarks
This method is optimized for use with C/C++. See example in section 7.9.9.

IsCheckEnabled

The IsCheckEnabled method returns the current execution state of the check object. If the
return value is TRUE, execution of the check is currently enabled, if FALSE it is currently
disabled.

Syntax

object.IsCheckEnabled

The object placeholder represents the SingleCheck object.

Return Type
VT_BOOL

Remarks
Method IsCheckEnabled is deprecated, please use property CheckEnabled instead.

7.5.3 Collection Properties and Methods
The SingleCheck object provides parts of the functionality of a collection object. Therefore,
one additional property and one additional method are available.

_NewEnum Property

The _NewEnum property provides an enumerator object that implements IEnumVARIANT.
It is used by collection handling like the For Each loop in Visual Basic®.

134 NeuroCheck Programmer’s Reference

Return Type
VT_DISPATCH

Example
The following example displays the name of each check function of the individual check in a
message box.

' ...
Dim CheckFunction As Object
For Each CheckFunction In SingleCheck

MsgBox CheckFunction.Name
Next CheckFunction
' ...

Item Method

The Item method returns the given check function object from the collection specified by
argument CFIndex. If no check function object is available for argument SCIndex, the Item
property returns VT_EMPTY.

Syntax

object.Item(CFIndex)

The object placeholder represents the SingleCheck object.

Return Type
VT_DISPATCH

Argument Type Description
CFIndex VT_VARIANT Indicates the check function object to be returned.

Remarks
If CFIndex is an integer value, the Item method returns the check function object with
position CFIndex in the collection of the SingleCheck object. If CFIndex is a string, the Item
method always returns the first check function in the collection whose name is equal to string
CFIndex.

Example
The following Visual Basic® sample code shows how to access the last check function of the
individual check.

' ...
Dim CheckFunction As Object
Set CheckFunction = SingleCheck.Item(SingleCheck.Count-1)
' ...

OLE Automation 135

7.5.4 Wrapper
The Visual C++ ClassWizard will create the following wrapper class from the type library:

class ISingleCheck : public COleDispatchDriver

7.6 CheckFunction object

7.6.1 Properties
This section lists the properties of the CheckFunction object.

Activated

The Activated property sets or returns a Boolean value indicating whether the check function
is activated or deactivated.

Syntax

object.Activated [=value]

The object placeholder represents the CheckFunction object.

Return Type
VT_BOOL

Remarks
The Activated property can only be changed for those check functions that allow
deactivation. Currently, only check functions Filter Image and Determine Position can be
deactivated. For all other check functions the Activated property returns TRUE always.

Category

The Category property returns the category to which the check function belongs. The
category IDs are defined in ncauto.h and listed in the Quick Reference section of this
manual.

Syntax

object.Category

The object placeholder represents the CheckFunction object.

136 NeuroCheck Programmer’s Reference

Return Type
VT_I2

CFIndex

The CFIndex property returns the index of the check function within the collection of the
individual check.

Syntax

object.CFIndex

The object placeholder represents the CheckFunction object.

Return Type
VT_I2

Remarks
Use the CFIndex property in combination with the Parent property and the Item method.
The following sample code shows how to connect the check function object following the one
currently stored in the CheckFunction variable with this object variable:

' ...
If CheckFunction.CFIndex < CheckFunction.Parent.Count Then
 Set CheckFunction = _
 CheckFunction.Parent.Item(CheckFunction.CFIndex + 1)
End If
' ...

ColsOfParameterMatrix

The ColsOfParameterMatrix property returns the number of columns of the check
function’s parameter matrix.

Syntax

object.ColsOfParameterMatrix

The object placeholder represents the CheckFunction object.

OLE Automation 137

Return Type
VT_I2

ColsOfResultMatrix

The ColsOfResultMatrix property returns the number of columns of the check function’s
result matrix.

Syntax

object.ColsOfResultMatrix

The object placeholder represents the CheckFunction object.

Return Type
VT_I2

ColsOfTargetValueMatrix

The ColsOfTargetValueMatrix property returns the number of columns of the check
function’s target value matrix.

Syntax

object.ColsOfTargetValueMatrix

The object placeholder represents the CheckFunction object.

Return Type
VT_I2

ErrorCode

The ErrorCode property returns a value indicating the status of the check function after its
most recent execution in automatic mode.

Syntax

object.ErrorCode

The object placeholder represents the CheckFunction object.

138 NeuroCheck Programmer’s Reference

Return Type
VT_I2

The possible return values of ErrorCode are:

Constant Value Description
NC_EXE_NOT -1 "Not Executed", either because the individual check has not

been executed since opening the check routine or because a
previous check function returned "not O.K." thus terminating
execution of the individual check.

NC_EXE_OK 0 "O.K."
NC_EXE_NOK 1 "not O.K." because of a target value violation, e.g. a

measurement did not conform to the tolerances or a bar code
contained the wrong string.

NC_EXE_ERROR 2 "not O.K." because of an internal error; such an error occurs
for example when an object required for computing a
measurement is not present or a bar code is unreadable.

FunctionId

The FunctionId property returns the check function’s internal function identification number.
Refer to the Quick Reference section for a list of identification numbers.

Syntax

object.FunctionId

The object placeholder represents the CheckFunction object.

Return Type
VT_I2

Name

The Name property returns or sets the check function’s (possibly user-defined) name. See
Figure 18.

Syntax

object.Name [=value]

The object placeholder represents the CheckFunction object.

OLE Automation 139

Return Type
VT_BSTR

OID

The OID property sets or returns the unique object identification number (OID).

Syntax

object.OID

The object placeholder represents the CheckFunction object.

Return Type
VT_I4

Parent

The Parent property returns the SingleCheck object the current check function belongs to.

Syntax

object.Parent

The object placeholder represents the CheckFunction object.

Return Type
VT_DISPATCH

RowsOfParameterMatrix

The RowsOfParameterMatrix property returns the number of rows of the check function’s
parameter matrix.

Syntax

object.RowsOfParameterMatrix

The object placeholder represents the CheckFunction object.

140 NeuroCheck Programmer’s Reference

Return Type
VT_I2

RowsOfResultMatrix

The RowsOfResultMatrix property returns the number of rows of the check function’s result
matrix.

Syntax

object.RowsOfResultMatrix

The object placeholder represents the CheckFunction object.

Return Type
VT_I2

RowsOfTargetValueMatrix

The RowsOfTargetValueMatrix property returns the number of rows of the check function’s
target value matrix.

Syntax

object.RowsOfTargetValueMatrix

The object placeholder represents the CheckFunction object.

Return Type
VT_I2

7.6.2 Methods
This section lists the methods of the CheckFunction object.

GetCurrentResult

The GetCurrentResult method returns the result values of the check function. It is only
available after at least one execution in automatic mode. The method returns a safearray
containing the current result values.

OLE Automation 141

Syntax

object.GetCurrentResult

The object placeholder represents the CheckFunction object.

Return Type
VT_VARIANT

Remarks
This method is optimized for use with C/C++. See the explanation in section 7.7.1 and the
example in section 7.9.8.

GetParameterItem

The GetParameterItem method returns an element of the check function’s parameter matrix.
The element to be read is specified by the arguments Row and Column. The method returns
the value of the element or VT_EMPTY on failure.

Syntax

object.GetParameterItem(Row, Column)

The object placeholder represents the CheckFunction object.

Return Type
VT_ VARIANT

Argument Type Description
Row VT_I2 Row index of element in parameter matrix.
Column VT_I2 Column index of element in parameter matrix.

Remarks
See the explanation in section 7.7.1.

GetParameters

The GetParameters method returns the current parameter settings of the check function. The
method returns a safearray containing the current parameter settings.

Syntax

object.GetParameters

The object placeholder represents the CheckFunction object.

142 NeuroCheck Programmer’s Reference

Return Type
VT_VARIANT

Remarks
This method is optimized for use with C/C++. See the explanation in 7.7.1and the example in
section 7.9.6.

GetResultItem

The GetResultItem method returns an element of the check function’s current result matrix. It
is only available after at least one execution in automatic mode. The element to be read is
specified by the arguments Row and Column. The method returns the value of the element, or
VT_EMPTY on failure.

Syntax

object.GetResultItem(Row, Column)

The object placeholder represents the CheckFunction object.

Return Type
VT_ VARIANT

Argument Type Description
Row VT_I2 Row index of element in result matrix.
Column VT_I2 Column index of element in result matrix.

Remarks
See the explanation in section 7.7.1.

GetTargetValueItem

The GetTargetValueItem method returns an element of the check function’s target value
matrix. The element to be read is specified by the arguments Row and Column. The method
returns the value of the element, or VT_EMPTY on failure.

Syntax

object.GetTargetValueItem(Row, Column)

The object placeholder represents the CheckFunction object.

OLE Automation 143

Return Type
VT_ VARIANT

Argument Type Description
Row VT_I2 Row index of element in target value matrix.
Column VT_I2 Column index of element in target value matrix.

Remarks
See the explanation in section 7.7.1.

GetTargetValues

The GetTargetValues method returns the current target value settings of the check function.
The method returns a safearray containing the current target value settings.

Syntax

object.GetTargetValues

The object placeholder represents the CheckFunction object.

Return Type
VT_VARIANT

Remarks
This method is optimized for use with C/C++. See the explanation in 7.7.1 and an example in
section 7.9.7.

HasCurrentResult

The HasCurrentResult method returns a Boolean value giving information about the check
function’s ability to provide result values to be accessed by a controller application. If TRUE,
the check function provides result values readable by a controller application, if FALSE it
does not.

Syntax

object.HasCurrentResult

The object placeholder represents the CheckFunction object.

144 NeuroCheck Programmer’s Reference

Return Type
VT_BOOL

Remarks
A return value of TRUE does not imply the existence of currently valid result values. Use the
ErrorCode property to confirm that the result values are current.

' ...
If CheckFunction.ErrorCode < 0 Then

MsgBox "Check function not executed!"
ElseIf CheckFunction.ErrorCode > 1 Then

MsgBox "Check function aborted due to failure!"
ElseIf not CheckFunction.HasCurrentResult then

MsgBox "Check function does not provide result values!"
Else

' Result is valid, read result
' ...

End If
' ...

HasParameters

The HasParameters method returns a Boolean value indicating the existence of parameter
values which may be altered by a controller application. If TRUE, the check function has
parameter settings which may be altered by a controller application, if FALSE it does not.

Syntax

object.HasParameters

The object placeholder represents the CheckFunction object.

Return Type
VT_BOOL

HasTargetValues

The HasTargetValues method indicates the existence of target values which may be altered
by a controller application. If TRUE, the check function has target values which may be
altered by a controller application, if FALSE it does not.

Syntax

object.HasTargetValues

The object placeholder represents the CheckFunction object.

OLE Automation 145

Return Type
VT_BOOL

SetParameterItem

The SetParameterItem method sets an element of the check function’s parameter matrix. The
element to be set is specified by the arguments Row and Column, its value by the argument
NewValue. The method returns a Boolean value indicating success or failure of operation.

Syntax

object.SetParameterItem(Row, Column, NewValue)

The object placeholder represents the CheckFunction object.

Return Type
VT_ BOOL

Argument Type Description
Row VT_I2 Row index of element in parameter matrix.
Column VT_I2 Column index of element in parameter matrix.
NewValue VT_VARIANT New value of specified element.

Remarks
See the explanation in section 7.7.1.

SetParameters

The SetParameters method sets the parameter information of the check function. The
parameter settings are passed in a safearray structure equivalent to the result value of method
GetParameters. The method returns a value indicating success or failure of the operation.

Syntax

object.SetParameters(ParaSetting)

The object placeholder represents the CheckFunction object.

146 NeuroCheck Programmer’s Reference

Return Type
VT_ BOOL

Argument Type Description
ParaSetting VT_VARIANT Safearray containing the parameter settings.

Remarks
This method is optimized for use with C/C++. See the explanation in section 7.7.1 and an
example in section 7.9.6.

SetTargetValueItem

The SetTargetValueItem method sets an element of the check function’s target value matrix.
The element to be set is specified by the arguments Row and Column, its value by argument
NewValue. The method returns a Boolean value indicating success or failure of the operation.

Syntax

object.SetTargetValueItem(Row, Column, NewValue)

The object placeholder represents the CheckFunction object.

Return Type
VT_ BOOL

Argument Type Description
Row VT_I2 Row index of element in target value matrix.
Column VT_I2 Column index of of element in target value matrix.
NewValue VT_VARIANT New value of specified element.

Remarks
See the explanation in section 7.7.1.

SetTargetValues

The SetTargetValues method sets the target value information of the check function. The
target value settings are passed in a safearray structure equivalent to the result value of
method GetTargetValues. The method returns a value indicating success or failure of the
operation.

OLE Automation 147

Syntax

object.SetTargetValues(TargetSetting)

The object placeholder represents the CheckFunction object.

Return Type
VT_ BOOL

Argument Type Description
TargetSetting VT_VARIANT Safearray containing the parameter settings.

Remarks
This method is optimized for use with C/C++. See the explanation in section 7.7.1and an
example in section 7.9.7.

7.6.3 Wrapper
The Visual C++ ClassWizard will create the following wrapper class from the type library:

class ICheckFunction : public COleDispatchDriver

7.7 Check Functions with Additional Automation Functionality
The following table lists the check functions providing additional functionality. The
functionality is explained in detail in subsequent sections.

Function name ID Parameters Target values Result data

Identify Barcode BCI=536 X X X

Identify DataMatrix
Code

DMCI=552 X X X

Count ROIS OBC=510 X X

Evaluate Classes CLE=543 X X*

Check Allowances GCHK=527 X* X*

Copy ROIs OCPY=525 X*

Determine Position POSC=521 X

Capture Image DIG=517 X

Transfer Image IDT=506 X

Determine Threshold ITH=508 X

Define ROIs DAOI=512 X

148 NeuroCheck Programmer’s Reference

Function name ID Parameters Target values Result data

Classify ROIs OCL=518 X

Screen ROIs OBF=513 X*

Rotate Image IROT=507 X

Template Matching TMA=546 X

Plug-In Functions X

[*] dynamic size of data: exchange through array of structures specific to the respective
function

7.7.1 Data Exchange
The OLE automation interface of NeuroCheck offers two different ways to perform transfer of
parameter, target value or result data for the check functions listed above.

Data Exchange by Element
Data exchange by element means that parameters, target value settings and current result
values associated with a CheckFunction object are treated as a matrix of values. The
appropriate size of each matrix is given by the function’s RowsOfxxxMatrix and
ColsOfxxxMatrix properties, where xxx stands for Parameter, TargetValue or Result.
Each element of the matrix can be passed in a variable of type VT_VARIANT to the function’s
GetxxxItem() and SetxxxItem() methods. Row and column index are passed as input
arguments to specify the data element to be read or set. The meanings of the elements for each
check function type are explained in the following sections. In general, columns always
contain the same type of information whereas the number of rows may be dynamic, indicated
by [*] in the overview table, and by row index n in the explanation below. This method is
more convenient for Visual Basic® programmers than using safearrays. It leads to optimal
performance if only single elements of the data matrix need to be accessed.

Data Exchange by SafeArray
This method always passes the complete set of parameters, target values or result values in a
safearray structure or an array of safearray structures using the Getyyy () and Setyyy ()
methods of the CheckFunction object, yyy standing for Parameters, TargetValues or
CurrentResult. The pertaining structures for the different check function types are defined in
Ncauto.h and explained below. This method minimizes the number of OLE automation
calls and is best suited to pointer languages like C/C++ and to situations where the whole set
of data needs to be transferred.

OLE Automation 149

7.7.2 Identify Bar Code
Function Identify Bar Code allows parameter and target value setting and result data retrieval
through OLE automation. The pertaining structures are defined in Ncauto.h.

Parameter Item Type Description

Code type (0,0) VT_I4 Type of bar code. Possible settings are defined in
Ncauto.h.

Line distance (0,1) VT_I4 Distance of search rays for scanning ROI [1,99].

Smoothing (0,2) VT_I4 Number of lines on both sides of search rays to be
averaged [1,99].

Scan direction (0,3) VT_I4 Direction for scanning ROI. Possible settings are
defined in Ncauto.h.

Check sum (0,4) VT_BOOL If TRUE, the function performs a check sum test on
the bar code. Only available for certain code types.

Characters (0,5) VT_I4 Number of characters contained in the code [1,99].
Only available for certain code types.

Target Value Item Type Description

Check target code (0,0) VT_BOOL If TRUE, the identified bar code is compared to the
target string.

Target string (0,1) VT_BSTR Bar code string to be present on the part.

Result Value Item Type Description

Bar code string (0,0) VT_BSTR String representing the identified bar code.

7.7.3 Identify DataMatrix Code
Function Identify DataMatrix Code allows parameter and target value setting and result data
retrieval through OLE automation. The pertaining structures are defined in Ncauto.h.

Parameters Item Type Description

Code type (0,0) VT_I4 Type of code, e.g. 12*12. Possible settings are
defined in Ncauto.h.

Code color (0,1) VT_I4 Color of code, dark or light [0,1]. See also defines
in Ncauto.h.

Code quality (0,2) VT_I4 Quality of code, good or poor [0,1]. See also
defines in Ncauto.h.

150 NeuroCheck Programmer’s Reference

Code size (0,3) VT_I4 Approximate code size in pixels [30,999].

Reference (0,4) VT_I4 Reference angle. Possible settings are defined in
Ncauto.h.

Range (0,5) VT_I4 Range of angle [0-180°].

Undersampling (0,6) VT_I4 Sub sampling parameter [1-9].

Min. edge height (0,7) VT_I4 Contrast required for edges [10, 255].

Target Value Item Type Description

Check target code (0,0) VT_BOOL If TRUE, identified bar code is compared to target
string.

Target string (0,1) VT_BSTR DataMatrix code string to be present on the part.

Result Value Item Type Description

DataMatrix code
string

(0,0) VT_BSTR String representing the identified DataMatrix code.

7.7.4 Count ROIs
Function Count ROIs allows target value setting and result data retrieval through OLE
automation. The pertaining structures are defined in Ncauto.h.

Target Value Item Type Description

Check count (0,0) VT_BOOL If TRUE, number of ROIs in first group is
compared to target value.

Minimum (0,1) VT_I4 Minimum number of ROIs required in first group.

Maximum (0,2) VT_I4 Maximum number of ROIs allowed in first group.

Result Value Item Type Description

Count (0,0) VT_I4 Current number of ROIs in first group.

7.7.5 Evaluate Classes
Function Evaluate Classes allows target value setting and result data retrieval through OLE
automation. The pertaining structures are defined in Ncauto.h.

Target Value Item Type Description

Verify (0,0) VT_BOOL If TRUE the function will compare the classes

OLE Automation 151

of the ROIs in its input list to the class strings
given.

Rejection
threshold

(0,1) VT_I4 An ROI will be classified as "Not O.K." if the
classification certainty falls below this value,
even if it corresponds to the respective class in
the class list. (Valid range [0,100])

Class strings (0,2-21) VT_BSTR Up to 20 class names to which the identified
classes of the ROIs are to be compared.

The result values are returned in an array consisting of structures holding the following values
for each identified ROI:

Result Value Item Type Description

Class string (n,0) VT_BSTR Name of the identified class.

Quality (n,1) VT_R4 Classification certainty.

7.7.6 Check Allowances
Function Check Allowances allows target value setting and result data retrieval through
OLE automation. The pertaining structures are defined in Ncauto.h.
The target values are transferred using an array of structures holding the following values for
each measurement:

Target Value Item Type Description

Verify (n,0) VT_BOOL If TRUE, the corresponding measurement will be
compared to the pertaining target values.

Description (n,1) VT_BSTR Name of the measurement. (read-only)

Nominal value (n,2) VT_R4 Nominal value of the measurement.

Lower allowance (n,3) VT_R4 Allowance added to the nominal value to
compute the lower limit of the measurement, i.e.
the requirement is:
current value ≥ nominal value + lower
allowance

Upper allowance (n,4) VT_R4 Allowance added to the nominal value to
compute the upper limit of the measurement, i.e.
the requirement is:
current value ≤ nominal value + upper
allowance

NOTE: to define a tolerance interval extending below the nominal value, the lower allowance
has to be given with a negative sign.
The result values of the function are returned in an array of structures holding the following
values for each measurement:

Result Value Item Type Description

152 NeuroCheck Programmer’s Reference

Description (n,0) VT_BSTR Name of the measurement.

Current value (n,1) VT_R4 Current value of the measurement.

7.7.7 Copy ROIs
Function Copy ROIs allows result data retrieval through OLE automation. The pertaining
structures are defined in Ncauto.h. The result values of the function are returned in an array
of structures holding the following values for each feature of each ROI:

Result Value Item Type Description

Object Number (n,0) VT_I4 Identifier of the ROI, counted from zero.

Feature ID (n,1) VT_I4 Identifier of the feature. The feature IDs are
defined in Ncauto.h and listed in the Quick
Reference section of this manual.

Current value (n,2) VT_R4 Current value of the feature.

NOTE: Function Copy ROIs is used to access the result data of function Compute
Features. The reason why the results of Compute Features cannot be accessed directly is
that this would increase execution time also for all users including those which do not use
OLE automation at all. Therefore the less often used function Copy ROIs was chosen to give
access to the feature values.
As a consequence, in order to read the result values of Compute Features through OLE
automation, an instance of check function Copy ROIs has to be inserted after function
Compute Features in the check routine.

7.7.8 Determine Position
Function Determine Position allows result data retrieval through OLE automation. The
pertaining structures are defined in Ncauto.h.

Result Value Item Type Description

X Offset (0,0) VT_R4 Offset in x direction of the reference object in
the current image to the stored reference point.

Y Offset (0,1) VT_R4 Offset in y direction of reference object in the
current image to the stored reference point.

Rotation (0,2) VT_R4 Rotation angle of the reference object in the
current image relative to the stored orientation.

Pivot X (0,3) VT_R4 X coordinate of current pivot point.

Pivot Y (0,4) VT_R4 Y coordinate of current pivot point.

OLE Automation 153

7.7.9 Capture Image
Function Capture Image allows parameter setting through OLE automation. The pertaining
structure is defined in Ncauto.h. The elements of the parameter structure define the
location of the image section to be transferred into memory.

Parameter Item Type Description

Camera (0,0) VT_I4 Identifier (= index) of the camera the image is
captured from.

7.7.10 Transfer Image
Function Transfer Image allows parameter setting through OLE automation. The pertaining
structure is defined in Ncauto.h. The elements of the parameter structure define the
location of the image section to be transferred into memory.

Parameter Item Type Description

Left (0,0) VT_I4 X coordinate of top left corner.

Top (0,1) VT_I4 Y coordinate of top left corner.

Right (0,2) VT_I4 X coordinate of bottom right corner.

Bottom (0,3) VT_I4 Y coordinate of bottom right corner.

Source (0,4) VT_I4 Identifier of the image source. The source IDs
are defined in Ncauto.h and listed below.

Camera (0,5) VT_I4 Identifier (= index) of the camera the image is
captured from.

Bitmap (0,6) VT_BSTR Name of bitmap file to be loaded. Not available
if more than one bitmap file selected in
Transfer Image.

Tray Index (0,7) VT_I4 Index of image tray the image

Possible settings for Source are:

Constant Value Description
NC_IDT_SOURCE_CAMERA 0 Image transferred from camera (i.e. frame grabber)
NC_IDT_SOURCE_BITMAP 1 Image loaded from bitmap file.
NC_IDT_SOURCE_TRAY 2 Image transferred from image tray.

7.7.11 Determine Threshold
Function Determine Threshold allows parameter setting through OLE automation. The
pertaining structure is defined in Ncauto.h. The elements of the parameter structure define
whether the threshold is computed manually or automatically, and certain parameters for each
of the two cases.

154 NeuroCheck Programmer’s Reference

Parameter Item Type Description

Use manual
threshold

(0,0) VT_BOOL If TRUE, the function uses the manual threshold,
which can be set by OLE automation, else it
performs automatic threshold computation.

Manual threshold (0,1) VT_I4 Value of the manual threshold to be used.
(Valid range [0,255])

Result image (0,2) VT_I4 Parameter used for automatic threshold
computation to adjust the predominance of light
or dark areas in the result image.
(Valid range [0,100])

Defect
suppression

(0,3) VT_I4 Parameter used for automatic threshold
computation to suppress disturbances caused by
very bright or very dark image regions.
(Valid range [0,49])

7.7.12 Define ROIs
Function Define ROIs allows parameter setting through OLE automation. The pertaining
structure is defined in Ncauto.h. The elements of the parameter structure define the
location of the ROI defined first (ROI with ID 0) if this is a rectangular ROI.

Parameter Item Type Description

Left (0,0) VT_I4 X coordinate of top left corner.

Top (0,1) VT_I4 Y coordinate of top left corner.

Right (0,2) VT_I4 X coordinate of bottom right corner.

Bottom (0,3) VT_I4 Y coordinate of bottom right corner.

7.7.13 Classify ROIs
Function Classify ROIs allows parameter setting through OLE automation. The pertaining
structure is defined in Ncauto.h. The elements of the parameter structure define the file
name of the classifier attached to this function.

Parameter Item Type Description

Classifier (0,0) VT_BSTR File name of classifier, possibly including path.

7.7.14 Screen ROIs
Function Screen ROIs allows parameter setting through OLE automation. The pertaining
structure is defined in Ncauto.h.
The parameter values are transferred using an array of structures holding the following values
for each feature currently available in function Screen ROIs:

OLE Automation 155

Parameter Item Type Description

Verify (n,0) VT_BOOL If TRUE, the feature is activated for screening,
else it is ignored.

Feature ID (n,1) VT_I4 Identifier of current feature. The feature IDs are
defined in Ncauto.h and listed in the Quick
Reference section of this manual.

Minimum (n,2) VT_R4 Minimum value allowed for the feature.

Maximum (n,3) VT_R4 Maximum value allowed for the feature.

NOTE: Group parameter settings of function Screen ROIs cannot be accessed through OLE
automation. The feature ID is read-only, i.e. it cannot be changed. When setting the
parameters in an array of structures, an arbitrary number of structures can be given. For
instance, if four features are activated, but only the limits for one of them has to be changed, it
is sufficient to only transfer the one structure element in the array that matches the feature ID.

7.7.15 Rotate Image
Function Rotate Image allows parameter setting through OLE automation. The pertaining
structure is defined in Ncauto.h. The element of the parameter structure defines the
operating mode of the check function.

Parameter Item Type Description

Mode (0,0) VT_I4 Value indicating either the rotation angle for
the rotation, or the direction of mirroring.
Possible settings are defined in Ncauto.h and
listed below.

Possible settings for Mode are:

Constant Value Description
NC_IROT_ROTATE_0 0 Rotation by 0 degrees counterclockwise
NC_IROT_ROTATE_90 1 Rotation by 90 degrees counterclockwise
NC_IROT_ROTATE_180 2 Rotation by 180 degrees counterclockwise
NC_IROT_ROTATE_270 3 Rotation by 270 degrees counterclockwise
NC_IROT_MIRROR_HORIZONTAL 4 Mirror image horizontally
NC_IROT_MIRROR_VERTICAL 5 Mirror image vertically

7.7.16 Template Matching
Function Template Matching allows parameter setting through OLE automation. The
pertaining structure is defined in Ncauto.h. The element of the parameter structure defines
the operating mode of the check function. The elements of the parameter structure apply ton

156 NeuroCheck Programmer’s Reference

of the first group of ROIs only.

Parameter Item Type Description

Result Positions (0,0) VT_I4 Number of objects the function will create at
most inside the available regions.

Minimum quality (0,1) VT_I4 Required degree of correspondence to the
template an object must reach to be created as
new region of interest [0,100].

7.8 Source Code Samples for Visual Basic®

The source code in this section was taken mostly verbatim from the official NeuroCheck OLE
automation Controller Examples implemented in Visual Basic 6.0. You can find the projects
including source code in the folder \Programming\OLE in the NeuroCheck installation
path.

7.8.1 Attach and Detach Server, Open a Check Routine
The following source code sample demonstrates how to establish the connection to the
automation server upon opening the form of the controller application, how to request
information, open and access a check routine and change the visibility state of the
NeuroCheck server. Also shown is how to detach the server upon closing of the controller
application's main form.

Option Explicit

' OLE access objects on module level
Dim NeuroCheck As Object ' NCApplication object
Dim CheckRoutine As Object ' CheckRoutine object
' Note: if the NCheck.tlb type library is included to the VB project,
' then the automation objects may also be defined as follows:
' Dim NeuroCheck As NCheck.Application
' Dim CheckRoutine As NCheck.CheckRoutine

' Constants specific to NeuroCheck
' Constants are defined in NcAuto.bas

Private Sub Form_Load()
On Error GoTo End_Application

' Create OLE server object (variable on module level)
Set NeuroCheck = CreateObject("NeuroCheck.Application")
If NeuroCheck Is Nothing Then

MsgBox "Unable to launch server application!"
GoTo End_Application

End If

' At this point we are attached to server NeuroCheck (V4.x and higher)!
' Server process is running as "hidden" software component:
' there is no entry in the system's taskbar as long as the
' visibility state of the data object is set to "hidden" (the default).

' Now read server information

OLE Automation 157

If NeuroCheck.LicenseLevel = NC_VERSION_LITE Then
MsgBox "You are running a demo version of NeuroCheck." & _

 "Execute will not work for the demo version!"
End If

' Get file name of check routine to be opened
Dim strFileName As String
If Not GetCheckRoutineName(strFileName) Then

MsgBox "Could not get check routine name!"
GoTo End_Application

End If

' Release check routine object before opening new one
Set CheckRoutine = Nothing

' Open check routine in server
If Not NeuroCheck.Open(strFileName) Then

MsgBox "Could not open " & strFileName
GoTo End_Application

End If

' Get check routine object (object veriable on module level)
Set CheckRoutine = NeuroCheck.ActiveCheckRoutine
If CheckRoutine Is Nothing Then

MsgBox "Could not access check routine object!"
GoTo End_Application

End If

' Switch to automatic mode using the "Operating Mode" property
' (only possible after check routine was opened successfully)
NeuroCheck.OperatingMode = NC_MODE_AUTOMATIC

' Switch visibility state to visible
' (only possible after check routine was opened successfully)
CheckRoutine.Visible = True

' Finally, enable Start button
cmdStart.Enabled = True

Exit Sub

End_Application:
' On error close application.
' NeuroCheck server will be detached upon unloading the form,
' i.e. in procedure Form_Unload()
Unload Me

End Sub

Private Sub Form_Unload(Cancel As Integer)
On Error Resume Next

' upon unload event of form, close connection to server
If Not NeuroCheck Is Nothing Then

' Detach NeuroCheck server by quit
' Note: changes to the check routine will NOT be saved.
NeuroCheck.Quit
Set NeuroCheck = Nothing

End If

End Sub

158 NeuroCheck Programmer’s Reference

7.8.2 Access Single Checks and Check Functions
The following source code sample shows how to access individual checks and check functions
of the check routine, and how to read information. The first example shows that the collection
property makes it possible to use a for each loop, the second example uses a "normal"
for loop.

' ...
' Loop over all checks and display name, if check is not enabled
Dim SingleCheck As Object
For Each SingleCheck In CheckRoutine

If Not SingleCheck.CheckEnabled Then
MsgBox SingleCheck.Name & " is disabled"

End If
Next SingleCheck

' Loop over all checks and display check that failed for most recent
' exeuction of check routine
Dim i As Integer
For i = 0 To CheckRoutine.Count - 1

If Not CheckRoutine.CurrentCheckResult(i) Then
MsgBox CheckRoutine.Item(i).Name & " failed!"

End If
Next i

' Loop over all check functions of first single check
' and display check functions that provide target values
Dim CheckFunction As Object
For Each SingleCheck in CheckRoutine

For Each CheckFunction in SingleCheck
If CheckFunction.HasTargetValues then

MsgBox CheckFunction.Name & " has target values!"
End If

Next CheckFunction
Next SingleCheck

7.8.3 Automatic Mode Execution
The following source code sample demonstrates how to execute the check routine in
automatic mode and how to retrieve the final result of the check routine.

Private Sub cmdStart_Click()
On Error GoTo Err_cmdStart_Click

' Start execution of NeuroCheck
If Not NeuroCheck.Execute Then

' Error occured on execution
' give acoustic warning and display message box
Beep
' evaluate LastError property of NeuroCheck,
' done in separate function called GetLastErrorString
MsgBox "Execute failed:" & vbCrLf & GetLastErrorString(NeuroCheck)
GoTo Exit_cmdStart_Click

End If

' Verify result of check routine
If (CheckRoutine.CurrentResult) Then

' Result was OK
' ...

Else

OLE Automation 159

' Result was not OK
' ...

End If

' Display identified barcode in Label control of form
' (see below ...)

' Display image in PictureBox control of form
' (see below ...)

' Display borders of ROI used to identify Barcode
' (see below ...)

Exit_cmdStart_Click:
Exit Sub

Err_cmdStart_Click:
MsgBox "Error " & Err & ": " & Error
Resume Exit_cmdStart_Click

End Sub

7.8.4 Check Function Result
The following source code excerpt demonstrates how to read out the result of a check function
after execution in automatic mode. Function Identify Bar Code simply returns the identified
bar code in element (0,0) of its result matrix.

' ...
' Assign object variable CheckFunction
' ...

' Verify check function
If CheckFunction.FunctionID <> NC_FCT_BCI Then Exit Function

' Verify error code of check function
If CheckFunction.ErrorCode < 0 Then

' check function was not executed
labValue.Caption = "-----"
GoTo Exit_DisplayValue

ElseIf CheckFunction.ErrorCode > 1 Then
' check function caused error due to internal failure
labValue.Caption = "ERROR"
GoTo Exit_DisplayValue

End If

' Read element (0,0) of result matrix
Dim varValue As Variant
varValue = CheckFunction.GetResultItem(0, 0)

' Verify VarType of varValue
If VarType(varValue) <> vbString Then

' VarType should be String for barcode!
' ...

Else
' Show result string in Label element
labValue.Caption = CStr(varValue)

End If

7.8.5 Check Function Target Values
The following source code excerpt demonstrates how to change the target value settings of

160 NeuroCheck Programmer’s Reference

check function Check Allowances. The function sets the nominal value of each measurement
to the most recent result of the function, i.e. it may be used to implement a "Teach" modus.
Note that this functionality requires to access both the result value matrix and the target value
matrix of the check function.

' ...
' Assign object variable CheckFunction
' ...

' Verify check function
If CheckFunction.FunctionID <> NC_FCT_GCHK Then Exit Function

Dim row As Integer
Dim strNameTarget As String
Dim strNameResult As String
Dim varResultValue As Variant

With CheckFunction

' verify size of target and result matrix
If .RowsOfTargetValueMatrix <> .RowsOfResultMatrix Then

Exit Function
End If

For row = 0 To .RowsOfTargetValueMatrix - 1

' only change nominal value, if it is used in GCHK
If .GetTargetValueItem(row, 0) Then

' compare names of measurement, just to be sure
strNameTarget = .GetTargetValueItem(row, 1)
strNameResult = .GetResultItem(row, 0)
If StrComp(strNameTarget, strNameResult) <> 0 Then

MsgBox "Names differ for row " & CStr(row)
End If

' get result value
varResultValue = .GetResultItem(row, 1)

' set target value
If Not .SetTargetValueItem(row, 2, varResultValue) Then

MsgBox "Could not set target value for " & strNameTarget
End If

End If

Next row

End With

7.8.6 Display Image
The following source code excerpt shows how to copy a complete image in DIB (Device
Independent Bitmap) format to the clipboard, and how to assign the contents of the clipboard
to a PictureBox control of the controller form. It also shows how to read the parameter setting
of check function Define ROIs in order to manually draw the corresponding ROI.

' ...
' Get index of image and zoom factor (or use constant NC_ZOOM_xxx)
' ...

' Clear clipboard
Clipboard.Clear

OLE Automation 161

' Copy image of check to clipboard
If SingleCheck.CopyImageToClipboard(intImageIndex, _
 NC_CF_COLOR_DIB, intZoom) Then

' now assign contents of clipboard to Picture property
' of PictureBox control
pBox.Picture = Clipboard.GetData()

End If

' Assign object variable for appropriate check function "Define ROI"
' ...

' Read paramters of check function "Define ROI"
Dim iLeft, iTop, iRight, iBottom
With CheckFunction

iLeft = .GetParameterItem(0, 0) * intZoom / 100
iTop = .GetParameterItem(0, 1) * intZoom / 100
iRight = .GetParameterItem(0, 2) * intZoom / 100
iBottom = .GetParameterItem(0, 3) * intZoom / 100

End With

' Draw the rectangular ROI
pBox.ScaleMode = vbPixels
pBox.Line (iLeft, iTop)-(iLeft, iBottom), RGB(0, 0, 255)
pBox.Line (iLeft, iTop)-(iRight, iTop), RGB(0, 0, 255)
pBox.Line (iRight, iBottom)-(iLeft, iBottom), RGB(0, 0, 255)
pBox.Line (iRight, iBottom)-(iRight, iTop), RGB(0, 0, 255)

7.8.7 Access Digital Inputs and Outputs
The following source code excerpt shows how to read a digital input, start execution and set a
digital output depending on the execution’s result.

Const BoardIndex As Integer = 0 ' Index of digital IO board
Const InputIndex As Integer = 0 ' Index of digital input to be read
Const OutputIndex As Integer = 1 ' Index of digital output to be set
Dim varInputValue As Variant ' Value of digital input

' Verify, if digital IO board is configured in NeuroCheck
If NeuroCheck.DeviceCount(NC_DEVICE_DIGITALIO) <= BoardIndex Then

Exit Function
End If

' Read first input of first digital IO board
varInputValue = NeuroCheck.ReadDigitalInput(BoardIndex, InputIndex)

' Verify type of input
If VarType(varInputValue) <> vbBoolean Then

' an error occured for reading the digital IO board
MsgBox "Could not read digital input no. " & CStr(InputIndex)

End If

If varInputValue Then

' Execute check and get result
Dim bCheckResult As Boolean
If NeuroCheck.Execute Then

bCheckResult = CheckRoutine.CurrentResult
Else

bCheckResult = False
End If

' Set digital second output depending of check result
If Not NeuroCheck.SetDigitalOutput(_

BoardIndex, OutputIndex, bCheckResult) Then

162 NeuroCheck Programmer’s Reference

MsgBox "Could not set digital output no. " & CStr(OutputIndex)
End If

End If

7.9 Source Code Samples for C/C++
The source code in this section was taken mostly verbatim from the official NeuroCheck OLE
automation Controller Example implemented in Visual C++. A simpler example is available
in source code in the folder \Programming\OLE\NcCppSimple in the NeuroCheck
installation path.

7.9.1 Contact Server
The following code sample demonstrates how to establish the connection to the automation
server, request information about the server and detach the connection again.

void OnAttachServer()
{

// create OleDispatchDriver object
INCApplication* pINCApplication = new INCApplication();
BOOL bConnected = FALSE;
try
{

bConnected = pINCApplication->
CreateDispatch("NeuroCheck.Application");

}
catch(...)
{

TRACE0("OLE exception during create of IDispatch\n");
}
if (FALSE == bSuccess)
{

delete pINCApplication;
TRACE0("error: unable to launch server application\n");
return;

}

// at this point we are attached to server NeuroCheck (V4.x ++)!
// server process is running as a "hidden" software component:
// there’s no entry in the system’s taskbar as long as the visibility
// state of the data object is set to "hidden" (the default).

// now read server information
short int iMajorVersion = pINCApplication->GetExeMajorVersion();
short int iMinorVersion = pINCApplication->GetExeMinorVersion();
CString szPath = pINCApplication->GetPath();
long lLicenseNumber = pINCApplication->GetLicenseNumber();
short int iLicenseLevel = pINCApplication->GetLicenseLevel();
switch(iLicenseLevel)
{
case NC_VERSION_RUNTIME: // 0x02

TRACE1("connected to runtime version no %ld\n",
 lLicenseNumber);
break;

case NC_VERSION_FULL: // 0x04
TRACE1("connected to Premium Edition no %ld\n",
 lLicenseNumber);
break;

OLE Automation 163

case NC_VERSION_PROFESSIONAL: // 0x10
TRACE1("connected to Professional Edition no %ld\n",
 lLicenseNumber);
break;

default:
break;

}

// quit server and detach again
pINCApplication->Quit();
delete pINCApplication;
TRACE0("disconnected\n");

} // eof function OnAttachServer()

7.9.2 Access Check Routine
The following source code sample demonstrates how to open a check routine and determine
information about its individual checks, while the controller is attached to the server.

void OnOpenCheckRoutine()
{

CString szPath;

// do something here to get path information...

// now open check routine in server
if (pINCApplication->Open((LPCTSTR)szPath))
{

// create check routine object
LPDISPATCH lpDis = pINCApplication->GetActiveCheckRoutine();
ICheckRoutine* pICr = new ICheckRoutine(lpDis);

// determine number of individual checks
int iCount = pICr->GetCount();

// loop over all checks and read their description texts
ISingleCheck* pISc;
for (int i = 0; i < iCount; i++)
{

// get individual check object
COleVariant var ((short)i, VT_I2);
LPDISPATCH lpDisCheck = pICr->Item(var);
ASSERT(NULL != lpDisCheck);

// create dispatch driver object
pISc = new ISingleCheck(lpDisCheck);

// read name
CString szName = pISc->GetName();
TRACE1("name = %s", (const char*)szName);
if (FALSE == pISc->GetCheckEnabled())

// modify execution state of check
pISc->SetCheckEnabled(TRUE);

// destroy dispatch driver object
delete pISc;

} // eofor

delete pICr;

} // eoif

164 NeuroCheck Programmer’s Reference

else
{

TRACE0("unable to open check routine!\n");
}

} // eof function OnOpenCheckRoutine()

7.9.3 Access Check Functions
The following source code sample demonstrates how to read the list of check functions of an
individual check and how to display the help page for a particular check function.

// ID of check function "IDT","Transfer image"
// NC:FCT_IDT declared in ncauto.h

void ShowCheckDetails(ISingleCheck* pISc)
{

// get number of check functions
int iCount = pISc->GetCount();
ICheckFunction* pICf;

// loop over check functions
for (int i = 0; i < iCount; i++)
{

// create check function object
COleVariant var ((short)i, VT_I2);
LPDISPATCH lpDis = pISc->Item(var);
ASSERT(NULL != lpDis);

// create dispatch driver object for check function
pICf = new ICheckFunction(lpDis);

// read name
CString szName = pICf->GetName();
TRACE1("name = %s", (const char*)szName);

// display help page, if function is "Transfer image"
if (NC_FCT_IDT == pICf->GetFunctionId())
{

// first retrieve help file path...
CString szHelpFilePath;

// After retrieving help file path,
// call WinHelp with context information
::WinHelp(hwnd, (const char*)szHelpFilePath,
 HELP_CONTEXT, (DWORD)NC_FCT_IDT);

} // eoif

delete pICf;

} // eofor

} // eof function ShowCheckDetails

7.9.4 Automatic Mode Execution
The following source code sample demonstrates how to switch to automatic mode after
establishing the connection to the server and loading a check routine, how to execute the

OLE Automation 165

check routine in automatic mode and retrieve the final result.
void OnStartAutomaticMode()
{

// ...
// switch to automatic mode using the
// "OperatingMode" property of the application object
pINCApplication->SetOperatingMode(NC_MODE_AUTOMATIC);

// execute active check routine
if (TRUE == pINCApplication->Execute())
{

// determine most recent result and statistics
BOOL bResult = pICheckRoutine->GetCurrentResult();
int iOk = pICheckRoutine ->GetPartsCheckedOk();
int iNOk = pICheckRoutine ->GetPartsCheckedNOk();
TRACE3(

"result = %u [total no. of Ok = %d, Nok = %d]\n",
(unsigned int)bResult, iOk, iNOk);

} // eoif
else
{

TRACE0("error: unable to execute check routine!\n");
}

// back to manual mode (not available for runtime license!)
pINCApplication->SetOperatingMode(NC_MODE_MANUAL);

}

7.9.5 Display Live Image
The following source code sample demonstrates how to switch to live mode and make the
server application visible after establishing the server connection and loading a check routine.

void OnLiveMode()
{

// ...
// switch to live image mode
pINCApplication->SetOperatingMode(NC_MODE_LIVE);

// remark: according to the automation interface guidelines
// the visibility state is a property of the main data //

object, NOT of the application object.
// Therefore toggle the visibility state of the data object
// "check routine"
pICheckRoutine->SetVisible(TRUE);

} // eof function OnLiveMode()

7.9.6 Check Function Parameters
The following source code sample demonstrates how to read out the parameters of a check
function, modify them and store them back to the check function object.

void ModifyParameters(ICheckFunction* pICf)
{

if (FALSE == pICf->HasParameters())

166 NeuroCheck Programmer’s Reference

{
TRACE0("no parameter settings available!\n");
return;

} // eoif

// read current parameter settings
VARIANT arg = pICf->GetParameters();

// error check
// data is transfered between server and controller using
// a safearray
if (arg.vt != (VT_UI1 | VT_ARRAY))
{

TRACE0("error: invalid return value!\n");
return;

} // eoif

switch(pICf->GetFunctionId())
{

case NC_FCT_IDT: // transfer image, define in ncauto.h
{

sNcIdtParameter* psPara; // declared in ncauto.h

// access data
if (S_OK != ::SafeArrayAccessData(

arg.parray, (void**)&psPara))
{

TRACE0("error safe array access!\n");
return;

} // eoif

// assign to local vars
unsigned int uiLeft = psPara->uiLeft;
unsigned int uiTop = psPara->uiTop;

// release access
::SafeArrayUnaccessData(arg.parray);

// notify system that safearray is no longer needed
::SafeArrayDestroy(arg.parray);

// ---
// ...do something with the data;
// launch a dialog for instance and let the user
// modify the data
// ---

// fill local struct and transfer the data back
// to the server
sNcIdtParameter sPara;
para.uiLeft = 100;
para.uiTop = 200;
SAFEARRAYBOUND rgb [] = { sizeof(sPara), 0 };

// create a 1-dimensional safearray
SAFEARRAY* psa = ::SafeArrayCreate(

VT_UI1, 1, rgb);
if (psa)
{

void* pData;
::SafeArrayAccessData(psa, (void**)&pData);

// serialize the data into the char array

OLE Automation 167

memcpy(pData, &sPara, rgb->cElements * sizeof(char));

// release
::SafeArrayUnaccessData(psa);

// now pack the data into the VARIANT
VARIANT arg;
VariantInit(&arg);
arg.vt = VT_UI1 | VT_ARRAY;
arg.parray = psa;

// transmit
if (FALSE == pICf->SetParameters(arg))

TRACE0("error!\n");
} // eoif(psa)
break;

} // eof case NC_FCT_IDT

case NC_FCT_ITH: // determine threshold, define in ncauto.h
{

sNcIthParameter* psPara; // declared in ncauto.h

// ... corresponding to above case
break;

} // eof case NC_FCT_ITH

default:
break;

} // eof switch

} // eof function ModifyParameters()

7.9.7 Check Function Target Values
The following source code sample demonstrates how to read out the target value settings of a
check function, modify them and store them back to the check function object. Function
Check ROIs uses a simple structure for its target values, function Check Allowances an
array of target value structures.

void ModifyTargetValues(ICheckFunction* pICf)
{

if (FALSE == pICf->HasTargetValues())
{

TRACE0("no target values available!\n");
return;

} // eoif

// read current parameter settings
VARIANT arg = pICf->GetTargetValues();

// error check
// data is transfered between server and controller using
// a safearray
if (arg.vt != (VT_UI1 | VT_ARRAY))
{

TRACE0("error: invalid return value!\n");
return;

} // eoif

switch(pICf->GetFunctionId())
{

case NC_FCT_OBC: // Count ROIs, define in ncauto.h

168 NeuroCheck Programmer’s Reference

{
sNcObcTargetValue* psTv; // declared in ncauto.h

// access data
if (S_OK != ::SafeArrayAccessData(arg.parray, (void**)&psTv))
{

TRACE0("error safe array access!\n");
return;

} // eoif

// assign to local vars
BOOL bCheckData = psTv->bCheckData;
unsigned int uiMin = psTv->uiMin;
unsigned int uiMax = psTv->uiMax;

// release access
::SafeArrayUnaccessData(arg.parray);

// notify system that safearray is no longer needed
::SafeArrayDestroy(arg.parray);

// ---
// ...do something with the data;
// launch a dialog for instance and let the user
// modify the target values
// ---

// fill local struct and transfer the data back
// to the server
sNcObcTargetValue sTv;
sTv.uiMin = 17;
sTv.uiMax = 21;
SAFEARRAYBOUND rgb [] = { sizeof(sTv), 0 };

// create a 1-dimensional safearray
SAFEARRAY* psa = ::SafeArrayCreate(VT_UI1, 1, rgb);
if (psa)
{

void* pData;
::SafeArrayAccessData(psa, (void**)&pData);

// serialize the data into the char array
memcpy(pData, &sTv, rgb->cElements * sizeof(char));

// release
::SafeArrayUnaccessData(psa);

// now pack the data into the VARIANT
VARIANT arg;
VariantInit(&arg);
arg.vt = VT_UI1 | VT_ARRAY;
arg.parray = psa;

// transmit
if (FALSE == pICf->SetTargetValues(arg))

TRACE0("error!\n");
} // eoif (psa)

break;
} // eof case NC_FCT_OBC

case NC_FCT_GCHK: // Check Allowances, define in ncauto.h
{

// advanced functionality:
// an array of structs is serialized into the safearray

OLE Automation 169

SAFEARRAY* psa = arg.parray;
unsigned int uiNumOfElements =

(psa->rgsabound[0].cElements /
sizeof(sNcGchkTargetValue));

TRACE1("%u struct elements\n", uiNumOfElements);
if (0 == uiNumOfElements)

return;

// access data
sNcGchkTargetValue* psTv;
::SafeArrayAccessData(arg.parray, (void**)&psTv);
for (unsigned int ui = 0; ui < uiNumOfElements; ui++)
{

float fRefValue = psTv[ui].fRefValue;
CString szName = psTv[ui].szName;
TRACE2("%s = %f\n", (const char*)szName, fRefValue);

}

// release access
::SafeArrayUnaccessData(arg.parray);

// notify system that safearray is no longer needed
::SafeArrayDestroy(arg.parray);

// ---
// ...do something with the data;
// launch a dialog for instance and let the user
// modify the target values
// ---

// alloc structures; write e.g. 5 new target values
psTv = new sNcGchkTargetValue[5];
for (int i = 0; i < 5; i++)
{

// set values
psTv[i].fRefValue = 1.1f;
psTv[i].fLowTol = 0.1f;

// ...
} // eofor

SAFEARRAYBOUND rgb [] = {
(5 * sizeof(sNcGchkTargetValue)), 0

};

// create a 1-dimensional safearray
SAFEARRAY* psa = ::SafeArrayCreate(VT_UI1, 1, rgb);
if (psa)
{

void* pData;
::SafeArrayAccessData(psa, (void**)&pData);

// serialize the data into the char array
memcpy(pData, psTv, rgb->cElements * sizeof(char));

// release
::SafeArrayUnaccessData(psa);

// now pack the data into the VARIANT
VARIANT arg;
VariantInit(&arg);
arg.vt = VT_UI1 | VT_ARRAY;
arg.parray = psa;

// transmit

170 NeuroCheck Programmer’s Reference

if (FALSE == pICf->SetTargetValues(arg))
TRACE0("error!\n");

} // eoif (psa)

delete [] psTv;
break;

} // eof case NC_FCT_GCHK

default:
break;

}

} // eof function ModifyTargetValues()

7.9.8 Check Function Result
The following source code sample demonstrates how to read out the result of a check function
after execution in automatic mode. Function Identify Bar Code uses a simple structure to
transfer its result data, function Evaluate Classes an array of result values.

void ReadResult(ICheckFunction* pICf)
{

// read current result data
VARIANT arg = pICf->GetCurrentResult();

// error check
// data is transfered between server and controller hidden
// in a safearray
if (arg.vt != (VT_UI1 | VT_ARRAY))
{

TRACE0("error: invalid return value!\n");
return;

} // eoif

switch(pICf->GetFunctionId())
{
case NC_FCT_BCI: // Identify Bar Code, define in ncauto.h

{
sNcBciResult* psRes; // declared in ncauto.h

// access data
::SafeArrayAccessData(arg.parray, (void**)&psRes);
TRACE1("barcode = %s\n", psRes->szString);

// release access
::SafeArrayUnaccessData(arg.parray);

// notify system that safearray is no longer needed
::SafeArrayDestroy(arg.parray);

break;
} // eof case NC_FCT_BCI

case NC_FCT_CLE: // Evaluate Classes, define in ncauto.h
{

SAFEARRAY* psa = arg.parray;
unsigned int uiNumOfElements =

(psa->rgsabound[0].cElements / sizeof(sNcCleResult));

TRACE1("%u struct elements\n", uiNumOfElements);
if (0 == uiNumOfElements)

return;

OLE Automation 171

sNcCleResult* psRes; // declared in ncauto.h

// access data
::SafeArrayAccessData(arg.parray, (void**)&psRes);

for (unsigned int ui = 0; ui < uiNumOfElements; ui++)
{

// output: class string and quality
TRACE2("class %s = %f\n", psRes[ui].szName,

psRes[ui].fQuality);
} // eofor

// release access
::SafeArrayUnaccessData(arg.parray);

// notify system that safearray is no longer needed
::SafeArrayDestroy(arg.parray);
break;

} // eof case NC_FCT_CLE

default:
break;

} // eof switch
} // eof function ReadResult()

7.9.9 Read Image
The following source code sample demonstrates how to read a gray level image from the
image stack of an individual check into the controller.

void ReadImageFromStack(ISingleCheck* pISc)
{

// first determine the number of available images
int iNumOfImages = pISc->GetNumOfImages();
if (0 == iNumOfImages)

// nothing todo
return;

// we have at least one image on the runtime data stack,
// read image at index zero
// read image properties
VARIANT argProp = pISc->GetImageProp(0);

// error check
if (argProp.vt != (VT_UI1 | VT_ARRAY))
{

TRACE0("error: invalid return data!\n");
return;

} // eoif

sNcImageProp* psProp; // declared in ncauto.h

// access data
::SafeArrayAccessData(argProp.parray, (void**)&psProp);

// verify image properties
if ((psProp->uiXSize > 0) && (psProp->uiYSize > 0))
{

// continue evaluation with verification of
// image data
VARIANT argData = pISc->GetImageData(0);
if (argData.vt != (VT_UI1 | VT_ARRAY))

172 NeuroCheck Programmer’s Reference

{
TRACE0("error: invalid return data!\n");
::SafeArrayUnaccessData(argProp.parray);
::SafeArrayDestroy(argProp.parray);
return;

} // eoif

// transfer grayvalue pixel array
char* pbyData;
::SafeArrayAccessData(argData.parray, (void**)&pbyData);

// now work with the image data...
// ...
// e.g. create a DIB and display it

// release access
::SafeArrayUnaccessData(argData.parray);
::SafeArrayUnaccessData(argProp.parray);

// notify system that safearray is no longer needed
::SafeArrayDestroy(argProp.parray);
::SafeArrayDestroy(argData.parray);

} // eoif

} // eof function ReadImageFromStack()

8 Check Routine in XML Format

This chapter describes the format created when check routines are stored as XML files, and
possible applications.

8.1 Introduction
As of NeuroCheck version 5.1, it is possible to store (i.e. to export) check routines in XML
format. This operation is described in the User Manual and the NeuroCheck online help.
XML check routine files (extension: "*.chrx") contain the same information as check
routine files in the binary format (*.chr) which is used as the default so far. In contrast to
the binary format, XML format is readable for both humans and for processing programs.
Chapter 8.2 gives a detailed description of the XML format of the NeuroCheck check routine
data.

8.1.1 What is XML ?
XML stands for eXtensible Markup Language; it is a meta language for the definition of
document types. The language was standardized by the World Wide Web Consortium (W3C
at www.w3c.org). XML provides a strict separation between document structure, contents
and visual rendering of the contents. The advantage of XML is that it is easily understandable
for both people and processing programs (parsers). Thus, XML is ideally suited for
exchanging data between different platforms and for medium term or long term storage of
important documents. Already, this technology has established itself as a standard in the IT
world for these purposes.

8.1.2 Possible applications of XML format
Using XML as the check routine file format offers a number of new possibilities for
NeuroCheck users. The main application areas are:
• Documentation:

An XML file can be viewed in a standard browser such as Microsoft Internet Explorer.
Together with additional formatting information (provided by an XSL file), the view of
the check routine thus created can be printed and archived for documentation purposes.
Depending on the content of the XSL file, the check routine data can be viewed at various
levels of detail. For more information on XSL files please refer to chapter 8.3.

• Change monitoring:
Because of the clear structure of the XML file, similar check routines can be compared
visually using an editor. This was not possible in the binary format (*.chr) used so far.
This way, you can quickly determine where a target value or parameter in a check
function was changed.

174 NeuroCheck Programmer’s Reference

8.2 Description of the XML format of check routines
This chapter describes the XML format of the NeuroCheck check routine data. The focus is
on the fundamental structure of the format and on hints to particular features. The necessary
formal definitions (e.g. the IDs and value ranges of the check function parameters) can be
found in various files in the subdirectory \Docs\Xml\ of the NeuroCheck installation
directory. For a deeper understanding of the format some knowledge of XML is required.

8.2.1 General description of the structure of XML files
The check routine XML format is based on the definition of XML 1.0 according to the
recommendation of the World Wide Web Consortium (W3C) as of October 6, 2000. The
formal specification can be found on the website http://www.w3.org/TR/REC-xml.
Please note that the definition is under constant review by the committee. Since this
specification is quite formal, the most important terms of this meta language will be briefly
described in the following.
• An XML file usually consists of a prolog and a main part.
• The prolog gives general information concerning the XML file. These are e.g. the XML

declaration, references to external layout information or document type definitions. They
can be recognized by the leading character sequence <? or <!. Example:

<?xml version="1.0"?>

• The main part of an XML file contains the data structured in elements.
• Each element is enclosed in a start tag and an end tag. The area between the tags is the

element content. The content can consist of an arbitrary number of arbitrary characters
(excluding > and < and some other reserved characters). Usually the content is text, i.e.
words and numbers. Some examples of elements:

<element>data</element>

<element2>1.95583</element2>

<address>552 Northern Avenue, IL 60142-5298</address>

• Elements can contain attributes that are assigned inside the start tag. The value assigned
to the attribute must be enclosed in quotation marks. Example:

<element id="100" type="int">42</element>

• Summary of the nomenclature using an example:
<x y="z">abc</x>

With:
 x: element name
 abc: element content
 y: attribute name
 z: attribute value

• Elements can be nested. This means that an element can contain one or more other
elements. The nesting is always hierarchic as with a tree structure. Elements must not
overlap. Example:

<main_element>

Check routine in XML format 175

 <e2>data</e2>
 <e2>other data</e2>
</main_element>

The elements enclosed in another element are called child elements of the enclosing
element.

• Comments, i.e. parts of the XML file that are only intended to aid in the interpretation of
the file and do not contain any data, are surrounded by the marks <!-- and --> .
Example:

<!-- Beginning of public data -->

• Data within the XML file that cannot be displayed – usually binary data – are within so-
called CDATA sections that begin with <![CDATA[and end with]]> .

8.2.2 Overview of the structure of the XML file of a check routine
NeuroCheck check routines in XML format are stored in files with the extension *.chrx.
These files contain the same information as the corresponding check routine files in binary
format (*.chr). The format of the XML check routine file adheres to the syntactic
specification of the XML meta language. The formal definition of the used elements can be
found in the files in the subdirectory \Docs\Xml\ of the NeuroCheck installation directory.
With some basic knowledge of XML and experience with NeuroCheck, the arrangement of
the XML elements is easily understandable allowing for a visual interpretation of the XML
file or a comparison of two similar XML check routines in an editor.

The prolog part of the XML file contains a reference to an XSL file which is necessary for the
visual rendering of the data. Please refer to chapter 8.3.1 for more information. The reference
may look as follows:

<?xml-stylesheet href="C:\Ncheck\XSL\CHRX_Detailed.xsl" type="text/xsl"?>

The main element of the XML file contains the check routine data, represented by an XML
element by the name of neurocheck_check_routine. This and its constituent parts will
be explained in the following sections.

8.2.3 Sample
First we will show you a sample check routine in XML format. For clarity’s sake, the sample
has been reduced to the essentials. Some elements were skipped and element attributes were
left out. The entire check routine can be found as file Nc_Sample.chrx in the subdirectory
\Docs\Xml\ of the NeuroCheck installation directory.

176 NeuroCheck Programmer’s Reference

<neurocheck_check_routine xmlns="http://www.neurocheck.com/xml">
 <!-- ############ Header information. Do not change ! ############# -->
 <header name="Header information">
 <meaning_of_contents>NeuroCheck Check Routine</meaning_of_contents>
 <created_by_name>NCheck51.exe</created_by_name>
 <created_by_dir>C:\Program Files\Ncheck51\</created_by_dir>
 <created_by_version>5, 1, 1038 [4]</created_by_version>
 <file_version name="Version identification">0x5111</file_version>
 <copyright>NeuroCheck GmbH, D-71686 Remseck, Germany</copyright>
 ...
 </header>
 <!-- ##################### Check routine data ##################### -->
 <body name="Check routine data">
 <cr_properties name="Check routine properties">
 <cr_description name="Description of check routine">
 <cr_name>NeuroCheck XML sample</cr_name>
 <cr_comment>Sample check routine</cr_comment>
 <cr_description_text>
 <binary_stream_encapsulation>
 <stream>
 This check routine contains two SC.

 The first single check contains ...
 The second single check contains ...

 </stream>
 <plain>
 <![CDATA[This check routine contains two SC.The
 first single check contains ...The se
 cond single check contains ...]]>
 </plain>
 </binary_stream_encapsulation>
 </cr_description_text>
 ...
 </cr_description>
 <cr_communication name="Communication">
 <cr_communication_id>0</cr_communication_id>
 </cr_communication>
 ...
 </cr_properties>
 <sc_list name="List of single checks">
 <!-- ================ Bar code identification =============== -->
 <single_check name="Single check" type="0" index="0">
 <sc_properties name="Single check properties">
 <sc_description name="Description of single check">
 ...
 </sc_description>
 ...
 </sc_properties>
 <cf_list name="Check function list">
 <!-- +++++++++++++++++ Transfer Image +++++++++++++++++ -->
 <check_function id="508" display="Transfer Image">
 <cf_properties name="Check function properties">
 <check_function_description>
 ...
 </check_function_description>
 </cf_properties>
 <cf_parameter name="List of parameters">

Check routine in XML format 177

 <parameter id="50801" name="Image source"
 display="Bitmap file">1</parameter>
 <parameter id="50804" name="Bitmap file name">
 C:\Program Files\Ncheck\Examples\Demo.bmp
 </parameter>
 ...
 </cf_parameter>
 </check_function>
 <!-- +++++++++++++++++++ Define ROIs ++++++++++++++++++ -->
 <check_function id="512" display="Define ROIs">
 ...
 <cf_parameter name="List of parameters">
 <parameter id="51201" name="List of ROIs" type="list">
 <parameter id="51202" name="Region" type="vector">
 <parameter id="51204" name="Group">0</parameter>
 <parameter id="51208" name="UpL X">0</parameter>
 <parameter id="51209" name="UpL Y">55</parameter>
 <parameter id="51210" name="Width">200</parameter>
 <parameter id="51211" name="Height">29</parameter>
 </parameter>
 </parameter>
 </cf_parameter>
 </check_function>
 <!-- ++++++++++++++++ Identify Bar Code +++++++++++++++ -->
 <check_function id="536" display="Identify Bar Code">
 ...
 <cf_parameter name="List of parameters">
 <parameter id="53601" name="Type" display="EAN 8">2
 </parameter>
 <parameter id="53602" name="L. distance">5</parameter>
 <parameter id="53603" name="Smoothing">5</parameter>
 ...
 </cf_parameter>
 <cf_target_values name="List of target values">
 <parameter id="53607" name="Compare with target value"
 display="Yes">1</parameter>
 <parameter id="53608" name="Target">218641</parameter>
 </cf_target_values>
 </check_function>
 </cf_list>
 </single_check>
 <single_check>
 ...
 </single_check>
 </sc_list>
 <cr_automatic_screen_config>
 ...
 </cr_automatic_screen_config>
 </body>
</neurocheck_check_routine>

8.2.4 Element <neurocheck_check_routine>
The element neurocheck_check_routine contains all data of the NeuroCheck check
routine and information about the NeuroCheck installation. Its xmlns attribute indicates that
this element and all its child elements are defined in the NeuroCheck name space.
The element is divided into the child elements header and body.

178 NeuroCheck Programmer’s Reference

8.2.5 Element <header>
The header element contains important information about the NeuroCheck installation. Its
child element file_version, for example, is used to manage future changes of the format
of the XML file. Do not edit the structure or the contents of the child elements of the header
element.

8.2.6 Element <body>
The body element contains all data of the NeuroCheck check routine. Its child elements are
divided into logical blocks, e.g. into the elements cr_properties, sc_list and
cr_automatic_screen_config etc. with their respective child elements.
The element cr_properties contains all the properties of the check routine.
The individual checks are listed as child elements single_check of sc_list.

8.2.7 Element <single_check>
The single_check element represents individual checks as well as start and end actions.
Each element is labeled with the attributes name and type. The child elements of a check
are divided into logical blocks, e.g. into the elements sc_properties and cf_list etc.
with their respective child elements. The check functions of the individual checks can be
found in the child elements check_function of cf_list.

8.2.8 Element <check_function>
The check_function element represents a NeuroCheck check function. The type of the
check function can be recognized by its attributes category, id and display (see also
the corresponding files in the subdirectory \Docs\Xml\ of the NeuroCheck installation
directory). All data of the check function is represented by the child elements of this element,
e.g. by the element cf_properties with its respective child elements. The parameter
settings and target values of the check function can be found in the child elements
cf_parameter and cf_target_values.

8.2.9 Elements <cf_parameter> and <cf_target_values>
These two elements contain only child elements of the type parameter. All parameters and
target values that can be configured in the Parameter and Target Value dialogs of the
respective check function are represented here.

8.2.10 Element <parameter>
The parameter element represents the settings of a parameter or target value in a check
function. The parameter can be identified by its attribute id (see also the corresponding files
in the subdirectory \Docs\Xml\ of the NeuroCheck installation directory).
The same applies to the elements input_parameter, output_parameter and
window_parameter, which represent the parameter settings of some other NeuroCheck
objects.

Check routine in XML format 179

Parameter elements where the attribute type has the value type="vector",
type="list" or type="array" contain arrays with a fixed or variable number of child
elements. This is the case, for example, for lists of objects or group-wise parameter settings.

8.2.11 Notes on element attributes
In the following, some attributes are described that have a similar meaning within several
elements.
Example 1:

<cf_write_to_file name="File output" display="Yes">1</cf_write_to_file>

Example 2:
<parameter id="53601" name="Barcode type" display="EAN 8">2</parameter>

Example 3:
<parameter id="50607" name="Manual Threshold" disabled="1">100</parameter>

• Attribute name
This attribute contains a plain language description of the element (in example 1 "File
output"). This description is easier to understand for a human than the element name
("cf_write_to_file" in example 1). In the case of check function parameters
(example 2), the attribute contains the designation of the parameter to be set in the dialog
("Barcode type"). The content of this attribute depends on the language version of
NeuroCheck (English/German).

• Attribute display
This attribute contains a description of the element‘s content ("Yes" in example 1,
"EAN 8" in example 2). This description is easier to interpret by a human than the
element‘s content itself ("2" in example 2). The content of this attribute depends on the
language version of NeuroCheck (English/German).

• Attribute disabled
Elements containing the attribute disabled="1" are ignored when the check routine is
executed. In the above example, this could be because another parameter, the threshold
determination method, is set to automatic computation, and not to manual input.

8.2.12 Element <binary_stream_encapsulation>
binary_stream_encapsulation elements contain complex check routine data that
might conflict with the XML syntax specification. This affects binary data within PlugIn
parameter sections, binary image data or certain HTML tags within the description texts of
NeuroCheck objects.
The child elements data and plain contain the data in a format usable by NeuroCheck,
whereas the element stream is used to display the data in XSL.

8.2.13 Purpose of the individual parts
The individual parts of the NeuroCheck check routine XML file have different purposes. The
element structure and the element contents (data) are of course the most important parts. Some
parts of the XML file only serve to enhance clarity and to facilitate visual interpretation of the

180 NeuroCheck Programmer’s Reference

data when viewing them in an editor. Other parts are helpful for different views in the
browser. The following table shows which part is used for what.

Visual interpretation
of raw XML data
in editor

Browser view
(with XSL)

Element structure X X

Element contents X X

Prolog of XML file X

CDATA sections

Attribute id

Attribute index

Attribute name X X

Attribute display X X

Attribute disabled X X

Attribute type X

Attribute category X

Comments in XML file X

Line breaking and
indentation in XML file

X

For an XML file created externally for import into NeuroCheck this means for example, that
many attributes are not required.

8.3 Using XSL files as rendering filter for the XML data

8.3.1 Purpose of the XSL files
XML provides a strict separation between document structure, contents and visual formatting
of the contents. Therefore, an XSL file is necessary for the visualization of XML data in the
browser. Like XML, XSL is a standard by the W3C; it stands for eXtensible Style sheet
Language. An XSL file acts as a filter that determines how the data of the XML file is to be
rendered. Internally, the browser uses the XSL instructions to perform a transformation from
XML to a HTML page.

Check routine in XML format 181

Figure 19: Utilization of XSL file as rendering filter for XML data

The User Manual and the NeuroCheck online help describe how an XSL file can be assigned
to a CHRX file when exporting a check routine.
There are alternatives to using XSL files to render XML data, e.g. using a JavaScript built into
a HTML page. These methods are not described here.

8.3.2 Creation of your own XSL files
Depending on the content of the XSL file, the check routine data can be viewed at various
levels of detail. In addition to the check routine data, the XSL rendering can also contain
arbitrary texts in XHTML and graphics.
Every user can create his or her own XSL files. We recommend using an existing XSL file as
a template, saving it under a different name and changing it. Included with NeuroCheck, you
can find a number of XSL files which provide different renderings of check routines. You can
find the files with the extension ".xsl" in the subdirectory \XSL\ under the NeuroCheck
installation directory. You can choose any directory for storing your own XSL files; however,
for clarity’s sake we recommend using the same directory.

XSL adheres to the syntax specification of the XML meta language. Please note that most
browsers react with an error message to even the smallest mistake in an XSL file’s syntax
without displaying anything else.

182 NeuroCheck Programmer’s Reference

8.3.3 Notes on the included XSL files
In this section important details of the XSL files will be explained. For more information
concerning XSL, XSLT, XPath, stylesheets or XHTML please refer to the common literature.

• Compatibility with Internet Explorer versions
To ensure compatibility with the older versions of Microsoft Internet Explorer (IE), the
included XSL files stick to an older version of the XSL syntax. The reference to the XSL
namespace can be found at the top of each XSL file:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

This XSL syntax is recognized by IE versions 5.0 and higher. The recent version of the
XSL syntax is only recognized by IE 6.0 and higher. If you want to make use of some of
the latest features of XSL, you have to change the namespace declaration as follows:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Please note that for this namespace the syntax of some XSL instructions, for example the
syntax of the test condition, has to be changed.

• Element <xsl_description>
This element is situated near the top of the XSL file within the root node template. This
element and its child elements are evaluated when the XSL file is incorporated into
NeuroCheck to display its contents in the list of XSL files. These elements should
therefore be used in their existing form and filled with your own data when you create
your own XSL files.

• <xsl:template> elements
Display of the check routine data is done using XSL templates. From a programmer’s
point of view, these can be seen as subroutines that call each other. It is advantageous to
use separate templates for the check routine, an individual check, a check function and
the parameters. In the following example you will see how the template for an individual
check makes use of the templates of all subordinated check functions:

<xsl:template match="nc:single_check">
 ...
 <xsl:apply-templates select="nc:cf_list/nc:check_function"/>
</xsl:template>

• Access to XML check routine data
In order to access the check routine data in the XML file you can use the syntax of the
XPath language, which again is too complex to be explained in detail here. The content of
an XML element is evaluated by the XSL element <xsl:value-of/> and can thus be
displayed in the browser. The assignment of the attribute select tells XSL which XML
element or attribute should be evaluated.

<xsl:template match="nc:single_check">
 <xsl:value-of select="nc:sc_properties/nc:sc_descript/nc:sc_name"/>
 ...
</xsl:template>

The access to an element is similar to browsing a directory tree by using relative XPath
specifications starting from the current XML element. In this example, the template
processing the XML element single_check first accesses its child element

Check routine in XML format 183

sc_properties, then that one's child element sc_descript and then that one's
child element sc_name. Please note that you have to use the "nc:" prefix because all
elements are defined in the NeuroCheck namespace.

It is not always only the content of an element that is evaluated. For example, the
attributes name and display often allow for a better rendering of the element and its
values. For example, if the following XML element

<parameter name="Barcode type" display="EAN 8">2</parameter>

is evaluated with the following XSL code
<xsl:template match="nc:parameter">
 The parameter
 <xsl:value-of select="@name"/>
 has been set to
 <xsl:value-of/>
 which means
 <xsl:value-of select="@display"/>
</xsl:template>

the result will be:
The parameter Barcode type has been set to 2 which means EAN 8

• Branchings
Using the XSL elements <xsl:if>, <xsl:choose>, <xsl:when> or
<xsl:otherwise>, it is possible to make XSL statements conditional, e.g. dependent
on the value of XML attributes. Example:

<xsl:template match="nc:parameter">
 <xsl:choose>
 <xsl:when test=".[@type='list']">
 <!-- do something with this list -->
 ...
 </xsl:when>
 <xsl:when test=".[@type='vector']">
 <!-- do something with this vector -->
 ...
 </xsl:when>
 <xsl:otherwise>
 <!-- this seems to be neither list nor vector -->
 ...
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

• Including images
It is recommended to store included image files in the subdirectory \XSL\Images\
under the NeuroCheck installation directory and access them using an absolute directory
specification. For this, use the XML element created_by_dir which contains the
NeuroCheck installation directory, e.g. C:\Program Files\Ncheck\. Example:

 <xsl:attribute name="src">
 <xsl:value-of select="//nc:created_by_dir"/>\XSL\Images\clock.gif
 </xsl:attribute>

The absolute directory and the file name are concatenated by XSL.

184 NeuroCheck Programmer’s Reference

• HTML
If you want to use HTML tags in the XSL file, you should use XHTML instead. It is very
similar to HTML, but has a stricter syntax. This means, for example, that all start tags
have to be closed properly with end tags. For example:

wrong correct

<H2>Title</H2> <h2>Title</h2>

 One
 Two

 One
 Two

• Cascading Style Sheets (CSS)
It is possible to make use of Cascading Style Sheets from within the XSL file. Insert
references to such files in the <html><head> section of the root node template.
Example:

<link rel="Stylesheet" type="text/css" media="screen">
 <xsl:attribute name="href">
 <xsl:value-of select="//nc:created_by_dir"/>\XSL\nc_screen.css
 </xsl:attribute>
</link>

9 Quick Reference

The following pages summarize all functions and data structures relevant for programming
user extensions to NeuroCheck with their parameters. For details on how to use the functions
and interpret their results please refer to the previous chapters.

9.1 Plug-In Interface Administrative Functions and Structures

DLLInfo()
extern "C" void WINAPI DllInfo(HWND hwndMain);

Displays about box of plug-in DLL. Required to be explicitly exported from plug-in DLL.

Parameters

hwndMain Handle of the NeuroCheck application window.

PI_GetHelpFilePath()
extern "C" BOOL WINAPI PI_GetHelpFilePath(LPSTR lpszPath)

Informs NeuroCheck about existence and name of a help file for the plug-in DLL. Required to
be explicitly exported from plug-in DLL.

Parameters

lpszPath Address of a buffer with size _MAX_PATH for returning the full
path name of the help file for the plug-in DLL.

Return Value

TRUE A help file has been provided for the DLL and its name returned
in lpszPath.

FALSE No help file has been provided.

PI_MenuCommand()
extern "C" void WINAPI PI_MenuCommand(HWND hwndMain,

unsigned int uiCmdId)

Handles calls to plug-in menu items in the Tools menu. Required to be explicitly exported
from plug-in DLL.

Parameters

hwndMain Handle of the NeuroCheck application window.
uiCmdID ID of selected menu item (range 0xD000 - 0xD099)

PI_GetNumberOfFcts()
extern "C" unsigned int WINAPI PI_GetNumberOfFcts(void)

Informs NeuroCheck about the number of check functions in the plug-in DLL. Required to be

186 NeuroCheck Programmer’s Reference

explicitly exported from plug-in DLL.

Return Value

Returns the number of check functions for which NeuroCheck has to allocated function info
blocks.

PI_GetFctCaps()
extern "C" BOOL WINAPI PI_GetFctCaps(

unsigned short int uiIndex,
sPI_FCT_DESC* const psFctDesc)

Informs NeuroCheck about the properties of a check function from the plug-in DLL. Required
to be explicitly exported from plug-in DLL.

Parameters

uiIndex Index of plug-in check function (range 0 to return value of
function PI_GetNumberOfFcts() minus 1)

psFctDesc Address of function info block. The function has to fill this data
structure with information about the function designated by
uiIndex

Return Value

TRUE Function exists and its properties have been stored in
*psFctDesc.

FALSE Value of uiIndex has been outside of the valid range.

sPI_FCT_DESC
typedef struct
{

// version control
unsigned int uiStructSize;

// data
unsigned int uiFunctionId;
unsigned int uiHelpContext;
unsigned int uiNumOfInputData;
unsigned int uiNumOfOutputData;

unsigned int uiSizeOfParameter;
unsigned int uiNumOfViews;
unsigned int uiDataOutput;

// pointer
// - data
int* piTypeOfInputData;
int* piTypeOfOutputData;
int* piMaskFileOutput;
int* piMaskRs232Output;

// - strings
LPSTR lpszFunctionName;
LPSTR lpszDescription;

Quick Reference 187

LPSTR lpszHintPos;
LPSTR lpszHintNeg;
LPSTR* alpszCustomViewNames;
LPSTR* alpszInputViewNames;
LPSTR* alpszOutputViewNames;

// - functions
PFNPlugInFctInitialize pfnInitialize;
PFNPlugInFctExecute pfnExecute;
PFNPlugInFctUnInitialize pfnUnInitialize;
PFNPlugInFctParameterDlg pfnParameterDlg;
PFNPlugInFctViewCreate pfnViewCreate;
PFNPlugInFctViewDestroy pfnViewDestroy;

}
sPI_FCT_DESC;

Describes capabilities and properties of a plug-in check function.

PI_GetNumberOfDataTypes()
extern "C" unsigned int WINAPI PI_GetNumberOfDataTypes(void)

Informs NeuroCheck about the number of data types in the plug-in DLL.

Return Value

Returns the number of data types for which NeuroCheck has to allocated info blocks.

PI_GetDataTypeDesc()
extern "C" BOOL WINAPI PI_GetDataTypeDesc(

unsigned short int uiIndex,
sPI_TYPE_DESC* const psTypeDesc)

Informs NeuroCheck about the properties of a custom data types from the plug-in DLL.

Parameters

uiIndex Index of plug-in data type (range 0 to return value of function
PI_GetNumberOfDataTypes() minus 1)

psTypeDesc Address of info block. The function has to fill this data structure
with information about the data type designated by uiIndex

Return Value

TRUE Data type exists and its properties have been stored in
*psTypeDesc.

FALSE Value of uiIndex has been outside of the valid range.

sPI_TYPE_DESC
typedef struct
{

// version control
unsigned int uiStructSize;

// data
unsigned int uiTypeId;
int iIconIndex;

188 NeuroCheck Programmer’s Reference

// - strings
LPSTR lpszTypeDesc;

// - function pointer
PFNPlugInTypeDataOutput pfnDataOutput;
PFNPlugInTypeDestroy pfnTypeDestroy;

}
sPI_TYPE_DESC;

Describes capabilities and properties of a plug-in data type.

9.2 Plug-In Check Function Declaration
This section lists the declarations required for the routines making up a plug-in check
function. The routines of your plug-in check functions must match the declarations exactly
except for the name.

Initialization Routine
BOOL WINAPI InitFunction(

sPI_CONTEXT_INFO* const psContext,
void* const pParameter);

Performs initialization necessary for a plug-in check function when it is first inserted into a
check routine (or loaded together with a check routine).

Parameters

psContext Pointer to structure containing context information for function.
pParameter Address of parameter block reserved for the function.

Return Value

TRUE Initialization has been carried out successfully.
FALSE An error occurred during initialization.

Deinitialization Routine
void WINAPI DeInitFunction(

sPI_CONTEXT_INFO* const psContext,
void* const pParameter);

Peforms necessary cleaning up for a plug-in check function when it is removed from the check
routine (or when the check routine is unloaded).

Parameters

psContext Pointer to structure containing context information for function.
pParameter Address of parameter block reserved for the function.

Execution Routine
BOOL WINAPI ExecuteFunction(

sPI_CONTEXT_INFO* const psContext,
void* const pParameter,

Quick Reference 189

void* const * const ppvDynInput,
void* * const ppvDynOutput);

Performs the actual computation; called whenever NeuroCheck encounters the plug-in check
function object during execution of a check routine.

Parameters

psContext Pointer to structure containing context information for function.
pParameter Address of parameter area reserved for the function.
ppvDynInput Address of array with PI_MAXDYNDATA pointers to input data

objects. Only as many pointers are valid as have been requested
in the function info block.

ppvDynOutput Address of array with PI_MAXDYNDATA pointers to output data
objects. Only as many pointers can be used as have been
requested in the function info block.

Return Value

TRUE Execution has been carried out successfully.
FALSE An error occurred during execution. The current check will

terminate with status not O.K.

Parameter Dialog Routine
BOOL WINAPI ParameterDialog(

HWND hwndApp,
sPI_CONTEXT_INFO* const psContext,
void* const pParameter,
void* const * const ppvInputData);

Handles the parameter input dialog of the check function. This routine is not required to exist
for a plug-in check function.

Parameters

hwndApp Handle for NeuroCheck application window.
psContext Pointer to structure containing context information for function.
pParameter Address of parameter block reserved for the function.
ppvInputData Address of array with PI_MAXDYNDATA pointers to input data

objects. Only as many pointers are valid as have been requested
in the function info block.

Return Value

IDOK Dialog has been left with OK, parameter data has changed.
IDCANCEL Dialog has been left with Cancel, no change of parameter data.

190 NeuroCheck Programmer’s Reference

Custom Visualization Routines
Handle the custom visualization of the check function. These routines are not required to exist
for a plug-in check function.

BOOL WINAPI ViewCreate(
sPI_CONTEXT_INFO* const psContext,
sPI_VIEW_INFO* const psViewInfo,
HANDLE* hView,
void* const pParameter,
void* const * const ppvInputData,
void* const * const ppvOutputData);

Parameters

psContext Pointer to structure containing context information for function.
psViewInfo Pointer to structure containing view information.
hView Address to return the bitmap handle for .
pParameter Address of parameter block reserved for the function.
ppvInputData Address of array with PI_MAXDYNDATA pointers to input data

objects. Only as many pointers are valid as have been requested
in the function info block.

ppvOutputData Address of array with PI_MAXDYNDATA pointers to output data
objects. Only as many pointers are valid as have been requested
in the function info block. If the execution of the function
returned FALSE, the output data will not be valid.

Return Value

TRUE Bitmap for view created successfully and returnd in hView.
FALSE Creation of view failed, hView will be ignored.

BOOL WINAPI ViewDestroy(
sPI_VIEW_INFO* const psViewInfo,
HANDLE* hView);

Called to release the view data allocated by ViewCreate.

Parameters

psViewInfo Pointer to structure containing view information.
hView Handle to bitmap allocated in ViewCreate.

Return Value

TRUE Bitmap passed in hView released successfully.
FALSE Function failed.

9.3 Plug-In Data Type Declaration
This section lists the declarations required for the routines making up a plug-in data type. The

Quick Reference 191

routines of your plug-in check functions must match the declarations exactly except for the
name.

Data Output Routine
BOOL WINAPI DataOutput(sPI_TARGET_INFO* const psTargetInfo,

 void* const pbyData,
 sPI_DATAOUTPUT_INFO* psDataContainer);

Handles data output of a custom data object in automatic mode if output is activated for the
plug-in check function using the plug-in data type.

Parameters

psTargetInfo Pointer to structure containing information about the output target
(file, serial interface)

pbyData Address of custom data object allocated previously inside the
execution routine.

psDataContainer Address of data container used for returning a data sequence
NeuroCheck will write to the given output target.

Return Value

TRUE Output data passed successfully in psDataContainer.
FALSE No output data available.

Destroy Routine
void WINAPI TypeDestroy(void* pbyData);

Peforms necessary cleaning up of a custom data object of the plug-in data type when it is
removed from the data pool of the individual check.

Parameters

pbyData Address of custom data object allocated previously inside the
execution routine.

9.4 Plug-In Data Exchange Structures

sPI_IMAGE
typedef struct
{

unsigned short int uiWidth; // width of image
unsigned short int uiHeight; // height of image
BOOL bColor; // color image?
BYTE * pbyGrayValue; // gray level values
BYTE * pbyRedValue; // values of red channel
BYTE * pbyGreenValue; // values of green channel
BYTE * pbyBlueValue; // values of blue channel
int iSource; // type of image source
LPCTSTR lpszSourceName; // name of image source

} sPI_IMAGE;

Used to exchange gray level image data between NeuroCheck and a plug-in check function.

192 NeuroCheck Programmer’s Reference

All elements are read-only. A function may only change values within the image data arrays.

sPI_HISTO
typedef struct
{

unsigned short int uiThreshold; //binarization threshold
unsigned int auiHistoBuffer[256]; // frequencies of gray levels

} sPI_HISTO;

Used to exchange histogram data between NeuroCheck and a plug-in check function.
All elements may be changed by a plug-in check function.

sPI_LAYER
typedef struct
{

unsigned int uiCount; // number of regions in array
BOOL bMeasurement[300];// feature validity flags
LPSTR lspzMeasurementName[300];// feature names
unsigned int uiClasses; // number of available classes
LPSTR* alpszClasses; // array of class names
sPI_OBJECT * pasObject; // array of pointers to regions

} sPI_LAYER;

Used to exchange region of interest data between NeuroCheck and a plug-in check function.
Except for flags in the bMeasurement array all elements should be considered "read-only".

sPI_OBJECT
typedef struct
{

/* ------* Read only *------ */
int iType; // AOI, contour or region
int iWidth; // enclosing rectangle, width
int iHeight; // enclosing rectangle, height
sPI_CONTOUR* psContour; // contour (may be missing)
sPI_REGION* psRegion; // region (may be missing)
// model geometries
int iFitType; // description of model geometry
float fFitParameters[10];// parameters of model geometry

/* ------------------------------------- */
/* ------* Modify/Write *------ */
int iNumber; // index of object (for sorting)
int iGroupNumber; // group membership
BOOL bValid; // validity (for screening)
int iX; // enclosing rectangle, left edge
int iY; // enclosing rectangle, top edge
float fMeasurement[300];// feature values
/* -------* Write only *------ */
int iShapeType; // shape type (AOI, polyline)
int iSearchReg; // size of surrounding area
sPI_POINTS* psPoints; // description of new object

} sPI_OBJECT;

Used to describe a single region of interest in an sPI_LAYER structure.
For a new object, the „write-only“ and „modify/write“ elements must be specified.

Quick Reference 193

Only „modify/write“ elements can be altered for input objects by a plug-in check function:
iNumber Changes sorting of regions.
iGroupNumber Changes groub membership of regions.
bValid Assigning FALSE lets region be removed.
iX, iY Changes position of region.
fMeasurement[i] Changes value of feature [i].

sPI_CONTOUR
typedef struct
{

int iXStart; // starting point x coordinate
int iYStart; // starting point y coordinate
int iLength; // number of contour elements
BYTE * pbyChain; // chain code array

} sPI_CONTOUR;

Used to describe the contour of a single region of interest in an sPI_OBJECT structure. All
elements are to be considered read-only.

sPI_REGION
typedef struct
{

int iLength; // length of RLC code
int* piX; // X coordinates of start positions
int* piY; // Y coordinates of start positions
int* piXLength; // lengths of line segment in X direction

} sPI_REGION;

Used to describe the region of a single region of interest in an sPI_OBJECT structure. All
elements are to be considered read-only.

sPI_POINTS
typedef struct
{

int iLength; // array length, i.e. number of points
int* piX; // X coordinates of points
int* piY; // Y coordinates of points

} sPI_POINTS;

Used to describe a newly created object in the sPI_OBJECT structure. All elements are to be
considered write-only.

sPI_MEASARRAY
typedef struct
{

unsigned int uiCount; // number of values
sPI_MEASVALUE * pasMeasValue;// array with value structures

} sPI_MEASARRAY;

Used to exchange geometrical measurement data between NeuroCheck and a plug-in check
function. All elements are to be considered „read-only“.

194 NeuroCheck Programmer’s Reference

sPI_MEASVALUE
typedef struct
{

unsigned int uiNumber; // identification number
float fMeasValue; // actual value
LPSTR lpszName; // description string (may be NULL)

} sPI_MEASVALUE;

Used to describe a single measurement in a sPI_MEASARRAY structure. Element
lpszName should be considered "read-only".

9.5 Plug-In Interface Symbolic Constants

Identification of Data Objects

Constant Description

PI_OBJECTAOI Region contains enclosing rectangle only.
PI_OBJECTCONTOUR Region also contains contour description.
PI_OBJECTREGION Region also contains contour and region description.

Identification of Model Geometries

Constant Description

PI_FIT_CONTOUR No specific model geometry calculated.
PI_FIT_POINT Model geometry is a single point.
PI_FIT_LINE Model geometry is a line.
PI_FIT_CIRCLE Model geometry is a circle.

Feature Values

Constant Description

PI_ALL_XCOFG X coordinate of the center of gravity of the region.
PI_ALL_YCOFG Y coordinate of the center of gravity of the region.
PI_AOI_XORG X coordinate of top left corner of the enclosing rectangle.
PI_AOI_YORG Y coordinate of top left corner of the enclosing rectangle.
PI_AOI_XDIM Width of enclosing rectangle.
PI_AOI_YDIM Height of enclosing rectangle.
PI_AOI_RATIO Ratio of height to width of enclosing rectangle.
PI_BNDAOI_LAXIS Length of principal axis of the region.
PI_BNDAOI_SAXIS Length of secondary axis of the region.
PI_BNDAOI_LANGLE_180

Direction of principal axis without regard to orientation (i.e.
between 0 and 180°)

PI_BNDAOI_LANGLE_360
Direction of principal axis with regard to orientation (i.e. between

Quick Reference 195

0 and 360°)
PI_BNDAOI_RADMEAN Average radius.
PI_BNDAOI_RADMIN Mimum radius.
PI_BNDAOI_RADMAX Maximum radius.
PI_BNDAOI_RANGLE Angle between minimum and maximum radius.
PI_ALL_AREA Area of region.
PI_BNDAOI_PERI Circumference of region.
PI_BNDAOI_COMPACT Form factor of region (defined as Area/(4 * π * Circumference²);

maximum value 1 for ideal circles, else smaller).
PI_BNDAOI_FIBRELENGTH

Approximate length of a line following the shape of the region
holding equal distance to both edges.

PI_BNDAOI_FIBREWIDTH
Sum of distances from the fibre to both edges.

PI_BNDAOI_ELONGATION
Ratio of fibre length to width.

PI_AOI_ANY Region touches any image border.
PI_AOI_UP Region touches top border of image.
PI_AOI_DOWN Region touches bottom border of image.
PI_AOI_LEFT Region touches left border of image.
PI_AOI_RIGHT Region touches right border of image.
PI_AOI_HOLES Number of holes enclosed in the region.
PI_ALL_MEAN Average gray level inside region.
PI_ALL_MIN Minimum gray level inside region.
PI_ALL_MAX Maximum gray level inside region.
PI_ALL_SIGMA Standard deviation of gray levels inside region.
PI_ALL_CONTRAST Maximum difference of gray levels inside region.
PI_ALL_GRADMEAN Average gradient inside region.
PI_ALL_GRADMAX Maximum gradient inside region.
PI_ALL_GRADSIGMA Standard deviation of gray levels inside region.
PI_GEN_CURV_MEAN Average curvature.
PI_GEN_CURV_SIGMA Standard deviation of curvature values.
PI_GEN_CURV_MIN Minimum curvature.
PI_GEN_CURV_MAX Maximum curvature.
PI_GEN_CURV_CONTRAST

Maximum amplitude of curvatures along the contour.
PI_GEN_COR_QUALITY

Correlation coefficient of region with its template.
PI_GEN_COR_SUBPIX_X

X coordinate of region found by subpixel template matching.
PI_GEN_COR_SUBPIX_Y

Y coordinate of region found by subpixel template matching.
PI_GEN_COR_ANGLE Angle of rotated template.
PI_GEN_CLASS Number of class determined by classifier.
PI_GEN_CLASSQUALITY

196 NeuroCheck Programmer’s Reference

Quality of classification result (equals the classification
certainty).

PI_POS_OFFSET_X Offset X determined by Determine Position.
PI_POS_OFFSET_Y Offset Y determined by Determine Position.
PI_POS_ROT_ANGLE Rotation angle determined by Determine Position.
PI_POS_PIVOT_X Pivot X determined by Determine Position.
PI_POS_PIVOT_Y Pivot Y determined by Determine Position.

9.6 Custom Communication Interface

DLLInit()
extern "C" BOOL DllInit (void)

Performs necessary initialization for the driver. Required to be explicitly exported.

Return Values

1 Successful initialization.
0 Error in initialization.

SetupDevice()
extern "C" BOOL SetupDevice (HWND hwndAppMain)

Can be used to display a setup dialog for the device. The function is not required. If the
function exists, it has to be exported explicitly.

Parameters

hwndAppMain Handle for NeuroCheck application window.

Return Values

1 Device setup has been changed, DllInit() will be called.
0 Device setup unchanged.

TestDevice()
extern "C" BOOL TestDevice (HWND hwndAppMain)

Can be used to display a test dialog for the device. The function is not required. If the function
exists, it has to be exported explicitly.

Parameters

hwndAppMain Handle for NeuroCheck application window.

Return Values

1 Device is working properly.
0 Device is not working.

Quick Reference 197

TestStart()
extern "C" BOOL TestStart (void)

Checks whether start signal has been received. Required to be explicitly exported.

Return Values

1 Start signal has been received.
0 No start signal has been received.

GetTypeId()
extern "C" BOOL GetTypeId (unsigned short int * pTypeId)

Checks whether check routine selection signal has been received and returns ID. Required to
be explicitly exported.

Parameters

pTypeId Used to return received check routine ID (0 - 99999)

Return Values

1 Selection signal has been received and returned in *pTypeId.
0 No selection signal has been received.

SetCheckResult()
extern "C" void SetCheckResult (BOOL bSuccess)

Transmits (or buffers) final check result. Required to be explicitly exported.

Parameters

bSuccess Indicates final status of check routine (FALSE for not O.K.)

TransferFloat()
extern "C" void TransferFloat (float fValue)

Transmits (or buffers) a floating point value. Required to be explicitly exported.

Parameters

fValue Floating point value to be transmitted.

TransferInt()
extern "C" void TransferInt (int iValue)

Transmits (or buffers) an integer value. Required to be explicitly exported.

Parameters

iValue Integer value to be transmitted.

198 NeuroCheck Programmer’s Reference

TransferString()
extern "C" void TransferString (char * pChar, unsigned int uiNumOfChars)

Transmits (or buffers) a string. Required to be explicitly exported.

Parameters

pChar Address of string to be transmitted.
uiNomOfChars Number of valid characters.

Flush()
extern "C" BOOL Flush (void)

Actuates transmission of buffered values at end of check routine run. Required to be explicitly
exported.

Result Values

1 Successful transmission.
0 Error in transmission.

9.7 OLE Automation Interface
This section lists the available properties and methods of the OLE automation objects exposed
by NeuroCheck. Access to the properties is given as ro for "read only" and rw for
"read/write".

NCApplication Object

Property Type, Access, Description

ActiveCamera VT_I2, rw; reads/sets camera for live view.

ActiveCameraName VT_BSTR, ro; returns camera designation for live view.

ActiveCameraZoom VT_I2, rw; reads/sets zoom factor for live view.

ActiveCheckRoutine VT_DISPATCH, ro; returns the active check routine object or
VT_EMPTY if none.

Application VT_DISPATCH, ro; returns the application object.

Caption VT_BSTR, ro; returns the title of the application window.

DeviceCount VT_I2, ro; returns number of devices configured in
NeuroCheck, or -1 on error. Takes one argument:
- VT_I2 DeviceType: Type of device.

DeviceName VT_BSTR, ro; returns name of a device configured in
NeuroCheck, or empty string on error. Takes two arguments:
- VT_I2 DeviceType: Type of device.

Quick Reference 199

- VT_I2 DeviceIndex: Index of device.

ExeMajorVersion VT_I2, ro; returns major version number (≥ 4).

ExeMinorVersion VT_I2, ro; returns minor version number (≥ 0).

FullName VT_BSTR, ro returns the file specification for the application,
including path.

Height VT_I4, rw; reads/sets height of main application window.

IgnoreCommunication
VT_BOOL, rw; reads/sets ignore communication option of
application.

InterfaceVersion VT_I2, ro; returns version number of automation interface.

LastError VT_I4, ro; returns error number for most recent error.

Left VT_I4, rw; reads/sets left edge of main application window.

LicenseLevel VT_I2, ro; returns license level { Premium, Professional,
Runtime, Demo }.

LicenseNumber VT_I4, ro; returns the license number from security key.

Name VT_BSTR, ro; returns the name of the application.

OperatingMode VT_I2, rw; reads/sets operating mode {manual, live, automatic}.

Parent VT_DISPATCH, ro; returns Null.

Path VT_BSTR, ro; returns path specification for the application.

ReadFromBitmap VT_BOOL, rw; reads/sets simulate image capture option of
application.

SubDeviceCount VT_I2, ro; returns number of sub devices configured in
NeuroCheck, or -1 on error. Takes three arguments:
- VT_I2 DeviceType: Type of parent device.
- VT_I2 DeviceIndex: Index of parent device.
- VT_I2 SubDeviceType: Type of sub device.

SubDeviceName VT_BSTR, ro; returns name of a sub device configured in
NeuroCheck, or empty string on error. Takes four arguments:
- VT_I2 DeviceType: Type of parent device.
- VT_I2 DeviceIndex: Index of parent device.
- VT_I2 SubDeviceType: Type of sub device.
- VT_I2 SubDeviceIndex: Index of sub device.

Top VT_I4, rw; reads/sets top edge of main application window.

Width VT_I4, rw; reads/sets width of main application window.

200 NeuroCheck Programmer’s Reference

WindowState VT_I2, rw; reads/sets visual state of main application window.

Method Description

Execute Starts execution of active check routine; returns success or
failure.
Return type: VT_BOOL
Arguments: None

Open Opens existing check routine; returns success or failure.
Return type: VT_BOOL
Arguments:
- VT_BSTR FileName: Name of the check routine

Quit Closes check routine and exits application.
Return type: None
Arguments: None

ReadDigitalInput Reads current state of a digital input. Returns Boolean value for
state of input, or VT_EMPTY on error.
Return type: VT_VARIANT
 Arguments:
- VT_I2 BoardIndex: Index of digital I/O board.
- VT_I2 InputNumber: Number of input to be read.

ReadDigitalInputWord
Reads current state of all (16) digital inputs of one board. Returns
decimal value of binary number encoding the state of 16 inputs,
or VT_EMPTY on error.
Return type: VT_VARIANT
 Arguments:
- VT_I2 BoardIndex: Index of digital I/O board.

ReadDigitalOutput Reads current state of a digital output. Returns Boolean value for
state of output, or VT_EMPTY on error.
Return type: VT_VARIANT
 Arguments:
- VT_I2 BoardIndex: Index of digital I/O board.
- VT_I2 OutputNumber: Number of output to be read.

ReadDigitalOutputWord
Reads current state of all (16) digital outputs of one board.
Returns decimal value of binary number encoding the state of the
16 outputs, or VT_EMPTY on error.
Return type: VT_VARIANT
 Arguments:
- VT_I2 BoardIndex: Index of digital I/O board.

Quick Reference 201

ReadFieldBusInputBit
Reads current state of an input bit of a field bus device. Returns
Boolean value for state of input bit, or VT_EMPTY on error.
Return type: VT_VARIANT
Arguments:
- VT_I2 BoardIndex: Index of field bus board.
- VT_I2 InputNumber: Number of input bit to be read.

ReadFieldBusOutputBit
Reads current state of an output bit of a field bus device. Returns
Boolean value for state of output bit, or VT_EMPTY on error.
Return type: VT_VARIANT
 Arguments:
- VT_I2 BoardIndex: Index of field bus board.
- VT_I2 OutputNumber: Number of output bit to be read.

SetDigitalOutput Sets state of a digital output. Returns success or failure of set
operation.
Return type: VT_BOOL
Arguments:
- VT_I2 BoardIndex: Index of digital I/O board.
- VT_I2 OutputNumber: Number of output to be set.
- VT_BOOL NewState: New state value.

SetDigitalOutputWord
Sets state of all (16) digital outputs of one board. Returns success
or failure of set operation.
Return type: VT_BOOL
Arguments:
- VT_I2 BoardIndex: Index of digital I/O board.
- VT_I4 BitMask: Bit mask for outputs to be changed.
- VT_I4 BitStates: State values to be set.

SetFieldBusOutputBit
Sets state of an output bit of a field bus device. Returns success or
failure of set operation.
Return type: VT_BOOL
Arguments:
- VT_I2 BoardIndex: Index of field bus board.
- VT_I2 OutputNumber: Number of output bit to be set.
- VT_BOOL NewState: New state value.

Wrapper
class INCApplication : public COleDispatchDriver

202 NeuroCheck Programmer’s Reference

CheckRoutine Object

Property Type, Access, Description

ActiveScreenLayout VT_I2, rw; reads/sets screen layout of automatic screen.

ActiveScreenLayoutName
VT_BSTR, ro; returns designation of screen layout.

Application VT_DISPATCH, ro; returns the application object.

Author VT_BSTR, rw; reads/sets author of the check routine.

Comments VT_BSTR, rw; reads/sets additional description of the check
routine.

Count VT_I2, ro; returns number of checks in the check routine.

CurrentCheckResult VT_BOOL, ro; returns result of most recent execution of the
given individual check. Takes one argument:
- VT_I2 SCIndex: Number of the individual check.

CurrentResult VT_BOOL, ro; returns final result of most recent execution of
the complete check routine.

FileName VT_BSTR, ro; returns filename of the check routine, not
including path.

FullName VT_BSTR, ro; returns full path of check routine file.

Heading VT_BSTR, rw; reads/sets user-defined name of check routine.

Name VT_BSTR, ro; returns filename of the check routine, not
including path.

OID VT_I4, rw; reads/sets the object's identification number (OID).

Parent VT_DISPATCH, ro; returns the application object.

PartsCheckedNOk VT_I4; returns total number of parts checked as "Part not O.K.".

PartsCheckedOk VT_I4; returns total number of parts checked as "Part O.K.".

Path VT_BSTR, ro; returns path specification for the check routine,
not including filename or filename extension.

Saved VT_BOOL, ro; returns TRUE if the check routine has not been
changed sinced it was last saved.

Visible VT_BOOL, rw; reads/sets visibility of the application to the user.

Quick Reference 203

Method Description

Save Saves check routine to the file given in FullName; returns
success or failure.
Return type: VT_BOOL
Arguments: None

SaveAs Saves check routine to the specified file; returns success or
failure.
Return type: VT_BOOL
Arguments:
VT_BSTR FileName: name of the new file, path optional.

Collection Property Type, Access, Description

_NewEnum VT_DISPATCH, ro; returns an enumerator object that
implements IEnumVARIANT.

Collection Method Description

Item Returns the given individual check object
Return type: VT_DISPATCH
Arguments:
- VT_VARIANT SCIndex: individal check object to be returned.

Wrapper
class ICheckRoutine : public COleDispatchDriver

SingleCheck object

Property Type, Access, Description

CheckEnabled VT_BOOL, rw; reads/sets current activation state of the check.

Count VT_I2, ro; returns number of check functions in the check.

CurrentResult VT_BOOL, ro; returns final result of most recent execution of
the single check.

Description VT_BSTR, rw; reads/sets description text of the check.

LastFunction VT_I2, ro; returns index of the last check function of the check
which returned "O.K.".

Name VT_BSTR, rw; reads/sets the name of the check.

NumOfImages VT_I2, ro; returns number of images on the internal stack.

OID VT_I4, rw; reads/sets the object's identification number (OID).

204 NeuroCheck Programmer’s Reference

Parent VT_DISPATCH, ro; returns the check routine object.

SCIndex VT_I2, ro; returns index of single check in check routine
collection.

Method Description

CopyImageToClipboard
Copies an image from the data stack to the clipboard.
Return type: VT_BOOL
Arguments:
- VT_I2 ImageIndex: number of the image on the stack.
- VT_I2 ImageFormat: format of image.
- VT_I2 ImageScale: scale factor of image.

EnableCheck Enables or disables execution of the check; returns previous state
(deprecated, use CheckEnabled property).
Return type: VT_BOOL
Arguments:
- VT_BOOL bEnable: if TRUE, execution will be enabled.

GetImageData Returns safearray containing gray level data of an image.
Return type: VT_VARIANT
Arguments:
- VT_I2 ImageIndex: number of the image on the stack.

GetImageProp Returns safearray containing properties of an image.
Return type: VT_VARIANT
Arguments:
- VT_I2 ImageIndex: number of the image on the stack.

IsCheckEnabled Returns current activation state of the check (deprecated, use
CheckEnabled property).
Return type: VT_BOOL
Arguments: None

Collection Property Type, Access, Description

_NewEnum VT_DISPATCH, ro; returns an enumerator object that
implements IEnumVARIANT.

Collection Method Description

Item Returns the given check function object.
Return type: VT_DISPATCH
Arguments:
- VT_VARIANT CFIndex: check function object to be returned.

Quick Reference 205

Wrapper
class ISingleCheck : public COleDispatchDriver

CheckFunction object

Property Type, Access, Description

Activated VT_BOOL, rw; reads/sets activation status of check function.

Category VT_I2, ro; returns category of the check function.

CFIndex VT_I2, ro; returns index of function in individual check
collection.

ColsOfParameterMatrix
VT_I2, ro; returns number of columns of parameter matrix.

ColsOfResultMatrix VT_I2, ro; returns number of columns of result matrix.

ColsOfTargetValueMatrix
VT_I2, ro; returns number of columns of target value matrix.

ErrorCode VT_I2, ro; returns the function’s execution status after most
recent execution of individual check.

FunctionId VT_I2, ro; returns the function’s identification number.

Name VT_BSTR, rw; reads/sets the function’s name.

OID VT_I4, rw; reads/sets the object's identification number (OID).

Parent VT_DISPATCH, ro; returns the single check object.

RowsOfParameterMatrix
VT_I2, ro; returns number of rows of parameter matrix.

RowsOfResultMatrix VT_I2, ro; returns number of rows of result matrix.

RowsOfTargetValueMatrix
VT_I2, ro; returns number of rows of target value matrix.

Method Description

GetCurrentResult Returns safearray containing the result values of the check
function; requires at least one execution in automatic mode.
Return type: VT_VARIANT
Arguments: None

GetParameterItem Returns an element of the check function’s parameter matrix.
Return type: VT_VARIANT
Arguments:
- VT_I2 Row: Row index of element in parameter matrix.

206 NeuroCheck Programmer’s Reference

- VT_I2 Col: Column index of element in parameter matrix.

GetParameters Returns safearray containing the current parameter settings of the
check function.
Return type: VT_VARIANT
Arguments: None

GetResultItem Returns an element of the check function’s current result matrix;
requires at least one execution in automatic mode.
Return type: VT_VARIANT
Arguments:
- VT_I2 Row: Row index of element in result matrix.
- VT_I2 Col: Column index of element in result matrix.

GetTargetValueItem Returns an element of the check function’s target value matrix.
Return type: VT_VARIANT
Arguments:
- VT_I2 Row: Row index of element in target value matrix.
- VT_I2 Col: Column index of element in target value matrix.

GetTargetValues Returns safearray containing the current target value settings of
the check function.
Return type: VT_VARIANT
Arguments: None

HasCurrentResult Returns TRUE if the check function returns result values to the
controller.
Return type: VT_BOOL
Arguments: None

HasParameters Returns TRUE if the check function makes its parameter settings
available to the controller.
Return type: VT_BOOL
Arguments: None

HasTargetValues Returns TRUE if the check function makes its target value settings
available to the controller.
Return type: VT_BOOL
Arguments: None

SetParameterItem Sets an element of the check function’s parameter matrix. Returns
success or failure of operation.
Return type: VT_BOOL
Arguments:
- VT_I2 Row: Row index of element in parameter matrix.
- VT_I2 Col: Column index of element in parameter matrix.
- VT_VARIANT NewValue: New value of specified element.

Quick Reference 207

SetParameters Sets parameters of the check function. Returns success or failure
of operation.
Return type: VT_BOOL
Arguments:
- VT_VARIANT ParaSetting: safearray containing parameters.

SetTargetValueItem Sets an element of the check function’s target value matrix.
Returns success or failure of operation.
Return type: VT_BOOL
Arguments:
- VT_I2 Row: Row index of element in target value matrix.
- VT_I2 Col: Column index of element in target value matrix.
- VT_VARIANT NewValue: New value of specified element.

SetTargetValues Sets target values of the check function. Returns success or
failure of operation.
Return type: VT_BOOL
Arguments:
- VT_VARIANT TargetSetting: safearray containing target
values.

Wrapper
class ICheckFunction : public COleDispatchDriver

Check Functions with Additional Automation Functionality

Identify Bar Code
Function ID: BCI=536

Functionality Description

Parameter values - Code type: value indicating type of bar code.
- Line distance: distance of search rays.
- Smoothing: smoothing parameter.
- Scan direction: value indicating scan direction.
- Check sum: if TRUE, the function performs a check sum test.
- Characters: number of charactes contained in the bar code.

Target values - Check target code: if TRUE, code is compared to target string.
- Target string: bar code string to be present on the part.

Result values - Bar code string: string with the identified bar code.

208 NeuroCheck Programmer’s Reference

Identify DataMatrix Code
Function ID: DMCI=552

Functionality Description

Parameter values - Code type: value indicating type of DataMatrix code.
- Code color: value indicating color of code (dark or light).
- Code quality: value indicating quality of code (good or poor).
- Code size: approximate code size in pixels.
- Reference: value indicating reference angle.
- Range: range of angle.
- Undersampling: sub sampling parameter.
- Minimum edge height: contrast required for edges.

Target values - Check target code: if TRUE, code is compared to target string.
- Target string: bar code string to be present on the part.

Result values - DataMatrix code string: string with the identified code.

Count ROIs
Function ID: OBC=510

Functionality Description

Target values - Check count: if TRUE, ROI count of first group is verified.
- Minimum: minimum number of ROIs required in first group.
- Maximum: maximum number of ROIs allowed in first group.

Result values - Count: current number of ROIs in first group.

Evaluate Classes
Function ID: CLE=543

Functionality Description

Target Values - Verify: if TRUE, function will verify the classes of ROIs.
- Rejection threshold: minimum certainty required for "O.K.".
- Class strings: up to 20 class names for verification.

Result values Results are returned in an array of structures holding the
following values for each ROI:
- Class string: name of the identified class
- Quality: classification certainty

Quick Reference 209

Check Allowances
Function ID: GCHK=527

Functionality Description

Target values Target values are set or returned in an array of structures holding
the following values for each measurement:
- Verify: if TRUE, measurement will be compared.
- Description: name of the measurement (read-only)
- Nominal value: nominal value of the measurement
- Lower allowance: determines lower limit of the measurement
- Upper allowance: determines upper limit of the measurement

Result values Result values are returned in an array of structures holding the
following values for each measurement:
- Description: name of the measurement
- Current value: current value of the measurement

Copy ROIs
Function ID: OCPY=525

Functionality Description

Result values Result values are returned in an array of structures holding the
following values for each ROI and each feature:
- Object number: identifier of ROI
- Feature ID: identifier of feature
- Current value: value of the feature

Determine Position
Function ID: POSC=521

Functionality Description

Result values - X Offset: offset in x direction to reference point
- Y Offset: offset in y direction to reference point
- Rotation: rotation angle relative to reference image
- Pivot X: x coordinate of current pivot point
- Pivot Y: y coordinate of current pivot point

Capture Image
Function ID: DIG=517

Functionality Description

Parameter values - Camera: identifier (index) of camera

210 NeuroCheck Programmer’s Reference

Transfer Image
Function ID: IDT=508

Functionality Description

Parameter values - Left: X coordinate of top left corner
- Top: Y coordinate of top left corner
- Right: X coordinate of bottom right corner
- Bottom: Y coordinate of bottom right corner
- Source: identifier of image source
- Camera: identifier (index) of camera
- Bitmap: name of bitmap file
- Tray index: index of image tray

Determine Threshold
Function ID: ITH=506

Functionality Description

Parameter values - Use manual threshold: if TRUE, manual threshold is used
- Manual threshold: value of the threshold
- Result image: parameter for automatic threshold computation
 to adjust predominance of light or dark areas
- Defect suppression: parameter for automatic threshold
 computation to suppress disturbances

Define ROIs
Function ID: DAOI=512

Functionality Description

Parameter values - Left: X coordinate of top left corner
- Top: Y coordinate of top left corner
- Right: X coordinate of bottom right corner
- Bottom: Y coordinate of bottom right corner

Classify ROIs
Function ID: OCL=518

Functionality Description

Parameter values - Classifier: name of the classifier attached to this function.

Quick Reference 211

Screen ROIs
Function ID: OBF=513

Functionality Description

Parameter values Parameter values are set and returned in an array of structures
holding the following values for each feature:
- Verify: if TRUE, feature is activated for screening
- Feature ID: identifier of current feature (read-only)
- Minimum: minimum value allowed for the current feature
- Maximum: maximum value allowed for the current feature

Rotate Image
Function ID: IROT=507

Functionality Description

Parameter values - Mode: value indicating rotation angle or mirror direction

Template Matching
Function ID: TMA=546

Functionality Description

Parameter values - Result positions: number of objects the function will create at
most in first group.
- Minimum quality: required degree of correspondence for first
group.

Check Function Categories
The check function categories are defined in ncauto.h.

Value Symbol and Meaning

 0 NC_FCTCAT_GRAYVALUE preprocessing, gray level

 1 NC_FCTCAT_IMGFILTER preprocessing, filters

 2 NC_FCTCAT_IMGGEO preprocessing, geometry

 3 NC_FCTCAT_COLORANALYSIS color analysis

 4 NC_FCTCAT_OBJCREATE image analysis, object creation

 5 NC_FCTCAT_OBJFEATURES image analysis, object features

 6 NC_FCTCAT_OBJEVALUATION image analysis, object evaluation

 7 NC_FCTCAT_TOOLS tools

212 NeuroCheck Programmer’s Reference

 8 NC_FCTCAT_IMGACQ image acquisition

 9 NC_FCTCAT_POSADJUSTMENT position adjustment

10 NC_FCTCAT_GAUGING gauging

11 NC_FCTCAT_PLUGIN plug-in functions

12 NC_FCTCAT_IOCOM IO communication

Check Function IDs

Value Mnemonic Meaning

500 INRM Enhance Image (image normalize)

501 DLEX Delay Execution

502 ICPY Copy Image

503 ICMB Combine Image

504 ILUT Apply Look up Table to Image

505 IFIL Filter Image

506 ITH Determine Threshold

507 IROT Rotate Image

508 IDT Transfer Image (Image Data Transfer)

509 OBIN Create Objects by Thresholding (binary)

510 OBC Count ROIs (objects)

511 OBS Sort ROIs (objects)

512 DAOI Define Regions (Areas) of Interest

513 OBF Screen ROIs (object filtering)

514 SOU Set Digital Output

515 RIN Read Digital Input

517 DIG Capture Image (digitize)

518 OCL Classify ROIs (objects)

519 OBM Compute Features (object measurements)

520 OBG Resample ROIs (object on grid)

521 POSC Determine Position (position calculation)

Quick Reference 213

523 POSR Position ROIs

524 PCA Calibrate Pixels

525 OCPY Copy ROIs (objects)

526 DGEO Gauge ROIs (define geometrical measurements)

527 GCHK Check Allowances (geometry)

528 GCMB Derive Measurements (geometry combine)

529 DIGA Capture Image in Parallel (digitize asynchronously)

531 ISHA Shading Correction (of image)

532 OCMG Compute Model Geometries (for objects)

536 BCI Identify Bar Code

537 OUR Unroll ROI (object)

538 GCB Calibrate measurements (geometrical)

539 OMG Combine ROIs (merge objects)

540 GMG Combine measurement lists (merge geometries)

541 ISM Smooth ROIs (in image)

542 OBCV Compute Curvature (of objects)

543 CLE Evaluate Classes

544 IFI Transfer Image to Tray (filing)

545 ODR Draw ROIs (objects)

546 TMA Template Matching

547 CMA Color Matching

548 PQI Print Quality Inspection

549 OBED Create Edges (as objects)

550 RFBB Read Field Bus Input (Bit)

551 SFBB Set Field Bus Output (Bit)

552 DMCI Identify DataMatrix Code

553 OCT Split ROIs (object cut)

554 IOFIL Filter Image in ROIs (object)

555 ISL Adjust Line-Scan-Image (image shift lines)

214 NeuroCheck Programmer’s Reference

556 CIA Control Image Acquisition

Error Type IDs

Value Meaning

0 General Failure.

1 Set property failed.

2 Get property failed.

3 Method failed.

4 Automation failure.

Error Detail IDs

Value Meaning

 1 General failure.

 2 Not available for Runtime version.

 3 Not available for Demo version.

 4 Only available in Live mode.

 5 Only available in Automatic mode.

 6 NCheck not configured for OLE automation.

 7 No check routine loaded.

 8 Device not available/not configured.

 9 Index out of range.

10 Index of device out of range.

11 Index of input/output bit out of range.

12 Row index out of range.

13 Column index out of range.

14 Unknown value for constant.

15 Check function has no target values.

16 Check function has no parameters.

Quick Reference 215

17 Check function has no result.

18 Input structure invalid.

19 Input type invalid.

20 Could not set input value.

21 Input value invalid.

22 Element is read-only.

23 File not found.

24 Cannot save check routine protected by password.

25 Cannot overwrite check routine protected by password.

26 Path not found.

27 Invalid dimensions for application window .

28 Not available under current security settings.

29 General failure for accessing device.

30 Error in SafeArray operation.

31 Invalid structure for SafeArray setting.

32 Warning: at least one check routine is configured for image
transfer from "File".

33 Cannot read file created by demo version.

34 Check routine was created using a plug-in extension currently
unavailable.

35 Property / method no longer supported.

36 Access denied under current security settings.

37 Parameters not available for polyline.

38 Input value was empty.

39 Check function must be initialized in NeuroCheck.

40 Unexpected file format.

41 Check function cannot be deactivated.

